Habit Persistence in Tourist Sub-Industries

Adrian R. Fleissig

October 2020
Habit Persistence in Tourist Sub-Industries

Adrian R. Fleissig
Department of Economics
California State University, Fullerton
Fullerton, CA 92834
Phone: (657) 278-3816
e-mail: afleissig@fullerton.edu

Abstract
Habit persistence across six U.S. tourism sub-industries is estimated using a dynamic forward looking model. Estimates show that habits largely determine current expenditure for air transportation, shopping, accommodations, and other transportation. Estimated uncompensated price elasticities find that air transportation and accommodations are price elastic in the short-run and long-run. Shopping is price inelastic in the short-run but price elastic in the long-run. An important result is that air transportation and other transportation are elastic substitutes for price changes in air transportation but inelastic substitutes for price changes in other related transportation. Estimates show that expenditure across most of the tourist sub-industries are closely related because they are gross complements. Food and beverage are necessities, price inelastic and relatively unresponsive to changes in expenditure across the sub-industries. The estimates show that policy makers and tourist marketing should account for habit persistence and differences between the short-run and long-run.

Key Words: habit formation, short-run and long run estimates, tourist sub-industries

October 2020
1. Introduction

The effect of both habits and the business cycle on price and income elasticities has important implications for tourism. Recent studies like Croes et al. (2018) found that the business cycle has a substantial impact on tourism demand and Mohammed (2019) finds tourism imports are generally income and price elastic. The meta-analysis of Nunkoo et al. (2020) analyzed the relationship between economic growth and tourism and finds support for the tourism-led growth hypothesis. Peng et al. (2015) found that dynamic models that include a lagged dependent variable to model tourist loyalty and “word of mouth”, for example Garín-Munoz (2006), Naude and Saayman (2005), Seetaram (2010), and Liu (2019), produce more elastic price and income elasticities. These studies typically focus on a homogeneous measure of tourism and fail to capture tourist habit formation which can differ over a range of tourist sub-industries.

Analyzing the impact of expenditure across tourist sub-industries provides additional insight into tourism expenditure. Expenditure across different tourist sub-industries have been analyzed by Divisekera and Deegan (2010) for Ireland, Divisekera (2010) for Australia, Wu, Li, and Song (2012) for Asian tourism, Anh et al. (2018) for Korea, and Aratuo and Etienne (2019) for the U.S. These studies of tourist sub-industries find varying degrees of substitution, complementarity, and budget elasticities across tourist commodities which have important consequences for tourist marketing and policy.

Consumer habits often impact future expenditure decisions especially for commodities like tobacco and alcohol products as in Gallet (2007), Zhen, Wohlgenant, Karns, and Kaufman (2011), Fogert (2010), Nelson (2014), Koksal and Wohlgenant (2016), Alexander and Neill (2017), and Goel and Saunoris (2018). These studies typically estimate a parameter that captures the degree of habit formation. Relatively few studies focus directly on a parameter estimate for
habit formation for tourism expenditure, see Bakkal (1991), Divisekera (2003), and Lyssiotou (2000), and Cazanova, Ward, and Holland (2014).

This study examines the impact of habit formation across six U.S. tourist sub-industries using the rational dynamic approach of Spinnewyn (1981), Muellbauer and Pashardes (1992), Pashardes (1986), Lyssiotou (2000), Zhen, Wohlgenant, Karns, and Kaufman (2011), and Kpksal and Wohlgenant (2016). The impact that current tourism expenditure has on future utility allows for intertemporally rational consumer behavior where current preferences for tourism are based on past expenditures captured through preference endogeneity. The data are from Aratuo and Etienne (2019) who emphasize the importance of analyzing six sub-tourist industries because of the interaction between sub-sectors and the business cycle. They find that gross domestic product co-moves with accommodation and food and beverage but does not cointegrate with the remaining four sub-industries. There is only evidence of a long-run relationship between other transportation and air transportation and short-run evidence of unidirectional causality from GDP to the six sub-industries.

Expenditure across tourist sub-industries are likely to have impacts on future spending based on habit formation, which will impact estimates of short-run, long-run price elasticities and budget elasticities. The estimates find that habits account for 33% of current tourist air transportation expenditure and around 24% for the three sub-tourist industries of shopping, accommodations, and other transportation. About 10% of food and beverage, and recreation expenditure is determined by habits. Estimated uncompensated own-price elasticities are elastic for air transportation and inelastic for the remaining tourist sub-industries. In the long-run, shopping is becomes elastic. While air transportation and other transportation are substitutes the majority of the remaining pairwise tourist sub-industries are gross complements. From the
estimated budget elasticities, recreation are luxuries in both the short-run and long-run. Air transportation becomes a luxury good in the long-run. The remaining tourist sub-industries are necessary goods.

The remainder of the paper is as follows. Section 2 outlines the dynamic model of habit formation, the data are discussed in section 3 with the estimation and results in section 4. The last section concludes the paper and provides policy recommendations.

2. A Dynamic Flexible Demand System

The forward looking dynamic model of Muellbauer and Pashardes (1992), and Lyssiotou (2000) is used to model habit formation where current expenditure on tourism \(q_{it} \) is determined by some desired level of tourism service flows \(\bar{q}_{it} \) and from an amount of past spending on tourism \(q_{it-1} \):

\[
q_{it} = \bar{q}_{it} + \theta_i q_{it-1}
\]

for \(i=1, \ldots, n \), and \(0 \leq \theta_i \leq 1 \) captures habit formation. Habit formation has a larger impact on current tourism expenditure as \(\theta_i \to 1 \) and no impact of habit formation when \(\theta_i = 0 \). Preference endogeneity across sub-industry \(i \) is captured by the estimate of \(\theta_i \). The rational dynamic model has the user cost of a tourist sub-industry capturing the future costs of habit formation. Under static expectations and a real interest rate \(r \), Spinnewyn (1981) and Muellbauer and Pashardes (1992) show that the user cost is:

\[
\tilde{p}_{it} = \lambda_i p_{it}
\]

with \(p_{it} \) the price of tourist sub-industry \(i \) in period \(t \) and \(\lambda_i = \left(\frac{1+r}{1+r-\theta_i} \right) \). Maximizing utility \(u(\bar{q}_{1t}, \ldots, \bar{q}_{nt}) \) subject to the budget constraint \(\tilde{y}_t = \sum_i \tilde{p}_{it} \bar{q}_{it} \), the rational dynamic forward looking model of Muellbauer and Pashardes (1992) gives:

\[
q_{it} = g_{it}(\tilde{p}_t, u_t) + \theta_i q_{it-1}
\]
which are converted into budget share equations \(w_{it} \) using \(p_{it}/\sum_i p_{it} q_{it} \)

\[
w_{it} = \tilde{w}_{it}(\tilde{y}_t/\lambda_i y_t) + \theta_i q_{it-1}(p_{it}/y_t)
\]

(4)

where \(w_{it} \equiv p_{it} q_{it}/y_t \) and \(\tilde{w}_{it} \equiv \tilde{p}_{it} \tilde{q}_{it}/\tilde{y}_t \). Using quarterly data, and the user cost the dynamic Almost Ideal Model (AIDS) model is:

\[
q_{it} = [\alpha_i + \sum_j \gamma_{ij} \ln \tilde{p}_{jt} + \beta_i (\ln \tilde{y}_t - \ln \tilde{p}_t)]\left(\frac{\tilde{y}_t}{\lambda_i p_{it}}\right) + \theta_i q_{it-4}
\]

(5)

where \(\ln \tilde{p}_t = \alpha_0 + \sum_i \alpha_i \ln \tilde{p}_{it} + \frac{1}{2} \sum_i \sum_j \tilde{p}_{it} \tilde{p}_{jt} \). Adding up requires \(\sum_i \alpha_i = 1 \), \(\sum_i \beta_i = 0 \), \(\sum_i \gamma_{ij} = 0 \) for all \(j \), homogeneity requires \(\sum_j \gamma_{ij} = 0 \) for all \(i \), and symmetry requires \(\gamma_{ij} = \gamma_{ji} \) for all \(i \) and \(j \). The budget share equations are:

\[
w_{it} = \left\{ [\alpha_i + \sum_j \gamma_{ij} \ln \tilde{p}_{jt} + \beta_i (\ln \tilde{y}_t - \ln \tilde{p}_t)]\left(\frac{\tilde{y}_t}{\lambda_i p_{it}}\right) + \theta_i q_{it-4}\right\} p_{it}/y_t + \mu_{it}
\]

(6)

and used in estimation to reduce heteroscedasticity with \(\mu_{it} \) a random error term. Following Lyssiotou (2000), the uncompensated elasticity of demand for tourist sub-industry \(i \) in period \(t \) is:

\[
e_{ijt} = \left(\frac{1}{w_{it}}\right)\left[\xi_{ij} \left(\frac{\tilde{y}_t}{\lambda_i p_{jt}}\right) + d_{ij} \theta_i \left(\frac{q_{it-1}}{y_t}\right)\right] - d_{ij}
\]

(7)

where \(\xi_{it} = \frac{\partial \tilde{w}_{it}}{\partial \ln p_{jt}} \) with \(d_{ij}=1 \) for \(i=j \) and \(d_{ij}=0 \) for \(i \neq j \). Since changes in the log \(p_{jt} \) in period \(t \) impacts tourist expenditure for \(k \) periods the elasticity of \(q_{it+k} \) with respect to \(p_{jt} \) is:

\[
e_{ijk} = \theta_i^k e_{ijt}(q_{it}/q_{it+k})
\]

(8)

giving the long run elasticity as \(k \to \infty \):

\[
e_{ij}^* = e_{ij}/(1 - \theta_i)
\]

(9)

with \(q_{it} = q_{it+k} = q_t \) for all \(k \) and \(r=0 \). The budget elasticities evaluated with \(q_{it} = q_t \) for all \(t \) are:

\[
e_i = (1 - \theta_i)(\beta_i/w_i + 1)
\]

(10)

giving long-run budget elasticities as in Lyssiotou (2000):

\[
e_i^* = e_i/(1 - \theta_i)
\]

(11)
3. Tourism Data

The quarterly real tourism data have been used by Tang and Jang (2009) and Aratuo and Etienne (2019) and are from the Bureau of Economic Analysis (BEA) and The six tourism industries used by Aratuo and Etienne (2019) are air transportation, food and beverage, recreation and entertainment, shopping, travelers' accommodations, and other transportation-related commodities. Food and beverage are transactions in restaurants and places that sell food and beverages. Recreation and entertainment covers leisure time activities like gambling, amusement parks and arcades, museums, historical sites, skating rinks, ski lifts, day camps, sporting goods, etc. Shopping are expenditure by tourists of nondurable commodities except gasoline. Travelers’ accommodations includes hotels, motels, and all other forms of lodging used by tourists. Rail, water transport, intercity bus, local bus, taxi, car rental, travel arrangement and reservation services, gasoline, etc. are part of other transportation. Tourist expenditures across all six industries declined from 2001–2003 and 2009–2011 with the largest decreases for accommodations and air transportation industries. The real tourism output are estimates of domestically produced goods and services sold to travelers and the seasonally adjusted quarterly real tourism data cover the period 1998.1 through 2017.3. Aratuo and Etienne (2019) provide a detailed explanation for each sub-industry. The estimates may be more representative of local travel since domestic tourism is about 80% of total U.S. tourism (OECD, 2018).

4. Estimation and Results

The share equations were estimated using TSP International 5.1 FIML with the across equations restrictions imposed. The parameter estimates are in Table 1 and the model fits the data as most of the parameters are statistically significant at the 5% or 1% level, relatively high
R-square, low root mean square errors, and the Berndt and Savin (1975) test for fourth order serial correlation with the across equation restrictions imposed fail to detect serial correlation.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α_i</td>
</tr>
<tr>
<td>Accommodations</td>
<td>0.1933</td>
</tr>
<tr>
<td>Food and beverage</td>
<td>0.0555</td>
</tr>
<tr>
<td>Shopping</td>
<td>0.1231</td>
</tr>
<tr>
<td>Air transportation</td>
<td>0.0847</td>
</tr>
<tr>
<td>Recreation</td>
<td>0.0598</td>
</tr>
<tr>
<td>Other transportation</td>
<td>0.0426</td>
</tr>
<tr>
<td></td>
<td>0.1090</td>
</tr>
<tr>
<td></td>
<td>0.0356</td>
</tr>
</tbody>
</table>

a Estimation using TSP International 5.1 FIML with the across equations restrictions imposed.
b Standard errors are bold face and most of the parameters are statistically significant at the 5% or 10% level.
c R-squares Food and beverage (0.837), Shopping (0.824), Air transportation (0.868), Recreation (0.856), Other transportation (0.841).
d Food and beverage (0.0243), Shopping (0.0122), Air transportation (0.0143), Recreation (0.0264), Other transportation (0.0354).

The parameters measuring habit persistence (θ_i) are all statistically significant at the 1% level. The largest degree of habit persistence is for air transportation. Habits account for 33% of current tourism expenditure on air transportation, and around 24% for the three sub-tourist industries of shopping, accommodations, and other transportation. For food and beverage, and recreation, habits account for only 11% and 10% of tourism expenditure, considerably less than the other tourism sectors. Lyssiotou (2000) also finds important evidence of habit persistence for international tourism of 36% for France, 24% for both USA-Canada and Spain-Portugal, and a smaller degree of 18% for Greece-Italy.

The uncompensated instant price elasticities calculated at the mean of the data are statistically significant at the 5% level and are in Table 2. Tourism expenditure on air
transportation is the only sub-industry that is price elastic (-1.255). The meta-analysis of Peng et al. (2015) found that the average own-price elasticity estimate for international air transportation was inelastic at -0.920 while estimates of Divisekera (2010) is inelastic at -0.52 and Anh et al. (2018) elastic at -3.40. Accounting for habit persistence is a major reason for the elastic estimate for air transportation. Other transportation is relatively price inelastic at -0.430 and similar to Divisekera (2010). Tourism expenditure on food and beverage is the most price inelastic (-0.217) which is expected as these commodities are typically considered necessary expenditures. However, Anh et al. (2018) find evidence of elastic demand for food and beverage. For shopping, the price elasticity is less inelastic at -0.876 and slightly less inelastic than Divisekera (2010). Wu, Li, and Song (2012) find that shopping can be elastic or inelastic in demand for their analysis of tourist spending by Chinese, Japanese, or Taiwanese tourists and Anh et al. (2018) have an elastic demand for Korean tourism. Accommodations has a price elasticity of -0.675 and similar to the average price elasticity for accommodation at -0.727 of Peng et al. (2015), -0.52 of

<table>
<thead>
<tr>
<th>Accommodations</th>
<th>Food and beverage</th>
<th>Shopping</th>
<th>Air transportation</th>
<th>Recreation</th>
<th>Other transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.675</td>
<td>-0.329</td>
<td>-0.187</td>
<td>-0.593</td>
<td>-0.207</td>
<td>-0.328</td>
</tr>
<tr>
<td>0.193</td>
<td>0.156</td>
<td>0.193</td>
<td>0.139</td>
<td>0.067</td>
<td>0.063</td>
</tr>
<tr>
<td>-0.099</td>
<td>-0.217</td>
<td>-0.133</td>
<td>-0.103</td>
<td>0.077</td>
<td>-0.188</td>
</tr>
<tr>
<td>0.019</td>
<td>0.062</td>
<td>0.113</td>
<td>0.035</td>
<td>0.024</td>
<td>0.201</td>
</tr>
<tr>
<td>-0.033</td>
<td>-0.088</td>
<td>-0.876</td>
<td>-0.067</td>
<td>0.383</td>
<td>-0.023</td>
</tr>
<tr>
<td>0.111</td>
<td>0.099</td>
<td>0.250</td>
<td>0.016</td>
<td>0.116</td>
<td>0.008</td>
</tr>
<tr>
<td>-0.729</td>
<td>-0.033</td>
<td>-0.218</td>
<td>-1.255</td>
<td>-0.302</td>
<td>1.347</td>
</tr>
<tr>
<td>0.208</td>
<td>0.043</td>
<td>0.066</td>
<td>0.180</td>
<td>0.099</td>
<td>0.630</td>
</tr>
<tr>
<td>-0.264</td>
<td>0.093</td>
<td>0.143</td>
<td>-0.109</td>
<td>-0.654</td>
<td>-0.017</td>
</tr>
<tr>
<td>0.087</td>
<td>0.074</td>
<td>0.129</td>
<td>0.040</td>
<td>0.249</td>
<td>0.008</td>
</tr>
<tr>
<td>-0.427</td>
<td>-0.247</td>
<td>-0.259</td>
<td>0.736</td>
<td>-0.088</td>
<td>-0.430</td>
</tr>
<tr>
<td>0.080</td>
<td>0.295</td>
<td>0.264</td>
<td>0.137</td>
<td>0.044</td>
<td>0.112</td>
</tr>
</tbody>
</table>

ε_{ij} is the long run unconditional elasticity of substitution between goods i and j for a price change in good j. a Standard errors are bold face.
Divisekera (2010), -0.37 of Wu, Li, and Song (2012), and Anh et al. (2018) -0.5. For recreation, the price elasticity is -0.654 which is more inelastic than the entertainment elasticity of -0.32 of Divisekera (2010) but Anh et al. (2018) has an elastic demand for Korean tourism.

The cross-price elasticities show that air transportation and other transportation are elastic substitutes for price changes in air transportation (1.347) but inelastic substitutes for price changes in other related transportation (0.736). In times of increasing prices for air transportation, tourism marketing may be better focused on other transportation instead of air transportation. There is generally little other evidence of substitution across tourist sub-industries. Shopping and recreation are inelastic substitutes for each other while food and recreation are very inelastic substitutes for each other as in Divisekera (2010).

The remaining pairwise tourist sub-industries are all complementary in use. The estimated cross-price elasticities find air transportation and accommodation having the highest degree of complementarity in use. Food and beverage are complements in use for changes in the price of accommodations (-0.329) but less so for changes in the price of food and beverage (-0.099). Estimated cross-price elasticities for shopping and the other tourist sub-industries are generally highly inelastic. In contrast, Wu, Li, and Song (2012) find that shopping, accommodations, and meals are substitutes using data from Hong Kong. Estimates show that other transportation and accommodations are also complements in use. Aggregate estimates over four countries from Divisekera (2010) find accommodation, food, transportation, shopping, and entertainment as gross complements. Anh et al. (2018) only found a statistically significant relationship of complementarity between transportation and food. Divisekera and Deegan (2010) find food is a gross complement with logging, transportation, shopping, and sightseeing.
The short-run and long-run budget and price elasticities are statistically significant at the 1% level in Table 2 and Table 3. Habit persistence drives up the absolute values of the long-run price elasticities and most notably shopping is price inelastic in the short-run (-0.876) but price elastic in the long-run (-1.168). This has important implications for investment in tourism because in a growing economy tourists are likely to increase shopping expenditure in the long-run. Air transportation is considerably less price inelastic in the long-run and reflects the importance of a relatively high estimate of habit persistence and tourist marketing in the growth phase of the business cycle. Recreation, which includes commodities that are relatively more expensive, and accommodations are also less price inelastic in the long-run.

<table>
<thead>
<tr>
<th></th>
<th>LR Price Elasticity (e_i^p)</th>
<th>SR Budget Elasticity (e_i)</th>
<th>LR Budget Elasticity (e_i^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accommodations</td>
<td>-0.892</td>
<td>0.737</td>
<td>0.973</td>
</tr>
<tr>
<td>Food and beverage</td>
<td>-0.244</td>
<td>0.374</td>
<td>0.422</td>
</tr>
<tr>
<td>Shopping</td>
<td>-1.168</td>
<td>0.717</td>
<td>0.956</td>
</tr>
<tr>
<td>Air transportation</td>
<td>-1.862</td>
<td>0.782</td>
<td>1.160</td>
</tr>
<tr>
<td>Recreation</td>
<td>-0.729</td>
<td>1.500</td>
<td>1.671</td>
</tr>
<tr>
<td>Other Transportation</td>
<td>-0.565</td>
<td>0.730</td>
<td>0.961</td>
</tr>
</tbody>
</table>

*Long-run price elasticities are from equation (9)
*Long-run budget elasticities are from equation (11)

The estimated budget elasticities have recreation as a luxury good in both the short-run and long-run. This is not surprising since recreation includes pricey goods like gambling, amusement parks, museums, historical sites, skating rinks, ski lifts, and day camps. Costa (1997) also finds the estimated income elasticities above unity for recreational goods whereas Anh et al.
(2018) estimate is 0.87. Air transportation becomes a luxury good in the long-run with an elasticity of 1.160 and is lower than the average international air income elasticity of 1.605 from the meta-analysis of Peng et al. (2015) and also income elastic estimate in Anh et al. (2018).

Accommodations is close to being a luxury good in the long run with the estimated long-run budget elasticity of 0.973 which is slightly lower than Peng et al. (2015) who find that international accommodation has an income elasticity of 1.166. Wu, Li, and Song (2012) find that mainland Chinese tourist consider accommodation as a luxury in Hong Kong but a necessity in other destinations. Divisekera (2010) and also finds accommodation to be a luxury good but Anh et al. (2018) find accommodation in Korea a necessity and Divisekera and Deegan (2010) a necessity for British tourism. Food and beverage has inelastic estimated budget elasticities in both the short-run and long-run and are necessary goods as in Divisekera and Deegan (2010). In contrast, Wu, Li, and Song (2012) find that food consumption outside of hotels is a luxury by Chinese tourists which is the same for Korean data of Anh et al. (2018). The estimated short-run and long-run budget elasticities find shopping to be a necessity as in Divisekera (2010) and Amh et al. (2018). Divisekera and Deegan (2010) find shopping is a luxury good in their British model.

The estimated budget elasticities differ in the sort-run and long-run and across tourist sub-industries. Tourist sub-industries can be necessities in the short-run but luxuries in the long-run. Homogenous estimates for tourism typically find that find some evidence that international travel is a luxury good as in Crouch (1995), Smeral (2004), Li, Song, and Witt (2004), Garin-Munoz (2007), Li, Song, Cao, and Wu (2013), Dogru, Sirakaya-Turk, and Crouch (2017). Using a homogenous indicator for tourism masks information that is important for investment in tourism in the short-run and long-run as well as considering the impact on tourism expenditure of
habit formation across industry sub-sectors. The estimated long-run budget elasticities of Lyssiotou (2000) and Li, Song, and Witt (2004) across countries were also more elastic than the short-run elasticities.

5. Conclusion

Habit persistence, price elasticities, and budget elasticities are estimated across six U.S. tourism sub-industries using a dynamic forward looking model. The estimates show that current expenditure across the sub-tourist industries are largely determined through habit persistence. Habits account for a third of current expenditure for air transportation and around a quarter of current tourism expenditure on shopping, accommodations, and other transportation. In contrast, habits only account for around ten percent for the two sub-industries of food and beverage, and recreation. Habit persistence has an important impact on the magnitude of both the short-run and long-run price and budget elasticities.

The estimated uncompensated price elasticities find that air transportation is the only sub-industry that is price elastic. In the long-run, air transportation becomes even more price elastic. While shopping is price inelastic in the short-run, it becomes price elastic in the long-run. Accommodations is price inelastic in both the short-run and long-run. Food and beverage are the most price inelastic in both the short-run and long-run which is not surprising since they are necessities based on the estimated budget elasticities. Estimated cross-price elasticities find air transportation and other transportation are elastic substitutes for price changes in air transportation but inelastic substitutes for price changes in other related transportation. The only other sub-industry sectors where there was evidence of substitution were between shopping and recreation as well as food and beverage, and recreation. Estimates find the remaining pairwise tourist sub-industries are all gross complements in use with air transportation and
accommodation having the highest degree of complementarity in use. The budget elasticities show that recreation is a luxury good in both the short-run and long-run since more expensive types of recreation are included in this sub-industry. Air transportation becomes a luxury good in the long-run with accommodations close to being a luxury good in the long-run.

The estimates demonstrate the importance of accounting for habit persistence across tourist sub-industries especially for policy makers and tourist marketing. Sub-tourist industries that have relatively high degrees of habit formation such as air transportation, accommodations, shopping, and other transportation should be targeted especially in times of economic growth. Private investment should create incentives to ensure consumers continue to develop habits for these sectors. Investment in tourism should consider differences in expenditure in the short-run and long-run. The estimated short-run and long-run budget elasticities find recreation to be a luxury good which suggests that investment in tourist attractions near amusement parks, museums, and historical sites may generate more revenue during economic growth but a less attractive investment during an economic slowdown. Air transportation is a necessity in the short-run but a luxury in the long-run so the goal of long term tourist investment in times of an economic expansion may be very beneficial. From the estimated cross-price elasticities, increases in air transportation expenditure during an expansion induces more spending on accommodations, food and beverage, shopping, and recreation which are complements but a decline for other transportation which is a substitute. The estimates for food and beverage expenditure are price inelastic and necessities in both the short-run and long-run and are thus relatively unresponsive to changes over the business cycle and generally to expenditure across the other tourist sub-industries. During an economic slowdown, the estimates suggest that tourist
agencies focus more on local tourism that does not typically require relatively high air transportation costs.

This research is limited to the six sub-tourist industries and the data are more representative of local U.S. tourism. Future analysis could use household data to gain further insight into habit formation and across more sub-tourist industries. In impact of habit formation involving international travel would also provide policy makers and private firms more insight into the types of tourist industries that can be targeted for future investment.
References

