g9 CALIFORNIA STATE UNIVERSITY

yd FULLERTON

MIHAYLO COLLEGE
OF BUSINESS AND ECONOMICS

Department of Economics
Working Paper Series

2020/004

Monitoring and Competing Principals: A Double-
Edged Sword

Jen-Wen Chang

January 2020

CALIFORNIA STATE UNIVERSITY, FULLERTON

Mihaylo College of Business and Economics, Department of Economics
800 N. State College Blvd., Fullerton, CA 92834-6848 / T 657-278-2228 / T 657-278-3097



Monitoring and Competing Principals: A Double-Edged

Sword

Jen-Wen Chang”

February 3, 2020

Abstract

Do monitoring technologies increase a principal’s profits if he has to compete with others
for an agent? While monitoring improves the risk-incentive tradeoff, it also reduces the costs
for a rivaling principal to offer a more attractive contract. We show that when the agent’s
prudence is smaller than two times risk aversion, equilibrium profits are lower when monitoring
is available if there is some competition. When prudence is larger than two times risk aversion,
equilibrium profits are higher when motoring is available. Conversely, the agent benefits from

monitoring when competition is intense but can be hurt when it is mild.

JEL Classification: D81, D82, D86
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1 Introduction

Recent technological breakthroughs enable principals to monitor the agents’ private actions better.
By the end of 2018, it is estimated that eighty percent of new cars for sale in the U.S. will come with
on-board telematics devices and, by 2020, seventy percent of all auto insurers will use telematics.'

The Chinese conglomerate Alibaba, which owns an insurance franchise, collects client data through

*California State University, Fullerton. jenwenc @ gmail.com
1https ://www.naic.org/documents/consumer_alert_understanding_usage_based_insurance.htm
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mobile apps tied to other services it offers: finance, e-commerce, and map services. Wearable
devices have also begun to make their ways to the health insurance industry ( ( ).
UPS even finds monitoring its drivers an effective way to raise their productivity.’

Does monitoring technology bring more profits to principals when they compete with each other
for an agent? While monitoring makes the risk-incentive tradeoff more efficient, larger surpluses
also make it easier for rivaling principals to offer a more competitive contract. Hence it is unclear
whether those technological breakthroughs increase competing principals’ profits. We answer this
question in a canonical agency model.

Consider a model in which risk-neutral principals contract exclusively with a risk-averse agent.
The agent’s actions determine the probabilities of good and bad outcomes. The principals attract
the agent through the indirect utilities offered by the contracts. When there is no monitoring, the
contracts have to be incentive compatible. When there is monitoring, incentive compatibility can
be ignored. Competition intensity is captured by a parameter akin to the inverse of traveling costs
in a Hotelling model so that the higher the intensity, the stronger the incentives for a principal to
offer a more attractive contract.

We find that when the agent’s prudence (—u'”/u’) is smaller than three times risk aversion
(—u" /u"), the marginal cost of increasing the utility offered is smaller when there is monitoring.
When prudence is smaller than two times risk aversion (e.g., CARA utilities), sufficiently-intense
competition, coupled with the smaller marginal cost, makes the equilibrium profits with monitoring
lower than that without monitoring. When the opposite condition holds, however, monitoring leads
to higher equilibrium profits.> Conversely, the agent is not hurt by monitoring if competition is
sufficiently intense but may receive lower utilities with monitoring when competition is mild.

We assume that monitoring, when available, is costless. This ensures that for each level of
indirect utility promised to the agent, the principal’s profit, conditional on a successful hire, is
higher than the no-monitoring profit. Thus, even if monitoring (telematics devices, wearables) is
an endogenous part of the contract, it is dominant for a principal to use it provided that the agent is

not averse of being monitored.* Therefore, we take monitoring, or lack thereof, as exogenous.

2https://www.npr.org/sections/money/z®14/@4/17/3®377®9®7/
3Similar conditions have long appeared in the economics of uncertainty. For example, the case k = 1 of the

inequality —u”’u’ + ku'"> < 0 dates back to ( ) and the case k = 2 is studied in ( ).
“For any no-monitoring contract with agent utility u, the principal can instead choose a monitoring contract that

promises the agent with a utility of u + € so that both the principal and the agent get better-off. This logic breaks down

when there are two types of agents. For example, ( ) find that in the U.S. auto insurance market,
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The Literature This paper relates to the study of competition in markets with asymmetric
information ( ( ), ( ), ( ).
Those papers impose zero-profit conditions (i.e., perfect competition or Bertrand competition) and
focus instead on who contract with which agent, the implemented effort level, etc. Imperfect com-
petition models, which are indispensable to study profits, have appeared in the study of banking
competitions (e.g., ( )) and more recently in (

(2016)) and ( (2017)).

( ) is also the first to show that more information may lead to
lower profits. They show in a model of Hotelling competition between banks with adverse selection
that the profits under asymmetric information can be higher or lower than that under symmetric
information, depending on how low the low type is. Nevertheless, the literature has shown little
interest in pursuing this question.

The effect of reducing information asymmetry on welfare in a competitive environment has also
received some attention. ( ) shows, in a model of Bertrand competition with product
quality, that the welfare under asymmetric information is higher than that under full information.

( ) show in an adverse selection model that reducing information asymmetries can
worsen the distortions from adverse selection.

The interplay of monitoring, or more generally, the precision of the agent’s performance signal,
with other endogenous variables in agency models, has also been investigated.

( ) study the optimal monitoring-money incentive mix to induce efforts. ( )
show that precision could lead to less agent effort.

We study, in a moral hazards model, how the absence or presence of the incentive compatibility
constraint affect the principals’ profits for different levels of competition intensity.

We state the model in Section 2, present the results in Section 3 and conclude in Section 4.

Proofs are in the Appendix.

2 Model

Two principals, i = 1,2, compete to hire an agent for a task through exclusive contracts.
The agent has a three-times differentiable utility function u : [0, 00) — R with &’ > 0,u” < 0

and u~' = v. The total surplus is xy in the high state and x; in the low state, with x5 > x; > 0.

only safe drivers self-select to be monitored.



The agent chooses an action a € {L, H} that results in probability p, ending up in the high state,
with 0 < p; < pg < 1 and expected surplus E, = p,xg + (1 — p,)x,. Action a has cost ¢, where
cg=c>0andc; =0.

A contract is a tuple (wy, w;,a) where wy, w; are the wages the agent gets when the state is
high or low and a is the implemented action.’

The expected utility of the agent under contract (wy, wy,a) is

pau(wp) + (1 = pu(w) = cq.

The agent’s autarky utility is u* € [0, pyu(xy) + (1 — py)u(x,) — c]. In an insurance model
u* = pyu(xy) + (1 — py)u(xy) — c but in a delegation model u* = 0 is also reasonable.

The profit of a principal if an agent signs up a contract that implements action a is

Ha = Ea — PaWH — (1 - pa)WL (1)

A contract implementing a promises the agent an utility of u if

pauwpy) + (1 = pu(wr) — ca = u (PK)

The feasible set of ¥ when implementing a = L is [u*, u(E;)], where the lower bound ensures
individual rationality and the upper bound ensures non-negative profit. The feasible set when im-
plementing @ = H when there is monitoring is [u*, u(Ey) — c].

Implementing a = L with or without monitoring and implementing a = H with monitoring
are straightforward. The risk-neutral principal gives the risk-averse agent a constant wage w with

u(w) — ¢, = u and obtains optimal profits
I (w) = EL —v(w) (2)

when implementing L and
I3 (u) = Ey ~ v + ) (3)

when implementing ¢ = H with monitoring.
To make the model non-trivial, we assume that when there is monitoring, implementing a = H

is more profitable for some u > u*, which holds if c is sufficiently small.

Assumption 1. I} (w*) > TI;(u*).

>The model is isomorphic to an insurance model in which a contract specifies a deductible and a premium.
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When there is no monitoring, a contract that implements the costly action a = H has to be

incentive-compatible:
puu(wy) + (1 = ppu(wr) — ¢ = pru(wy) + (1 — pru(wy). (IC)

In particular, constant wage violates (IC).

Assume that the agent is incentivized if he owns the project.

Assumption 2. pHI/l(XH) + (1 - pH)M(XL) —C> pLLt(.XH) +(1 - pL)l/l(.XL).
This guarantees the existence of an IC contract that gives positive profit.

Proposition 2.1. When there is no monitoring, there exists u > u* such that for u € [u*,u], a
contract implementing a = H that maximizes (1) subject to (PK) and (IC) exists. The optimal profit
is

(1 = pu)c
PH — DL
with 1) (w) = 0. Furthermore, 11} (u) > TIN(w) for all u.

Pt ) )

Y = Ey —pHv(y+ c+
P — DL

)—(1—pH)v(g+c—

Competition is modeled by a matching function. Let u;, u, be the utilities each principal offers.
The probability that principal i is matched with the agent is given by a twice-differentiable matching

function p(u;, u_;; y) with matching efficiency parameter y > 0 such that
Assumption 3.

1. p(uy,uz;y) + p(uy,uy;y) = 1.
2. p1=0p(ui,uy;y)/0uy > 0, p3 = Op(uy, up;y)/0y > 0 when uy > u,.

3. p1(uy,uz;y)/ p(uy, uy;y) is decreasing in uy, p(uy,uy;y)/p(uy, uy;y) is increasing in uy and

pi1(u, u;y)/ p(u, u;y) = y.

Principal i’s expected profit is p(u;, u_;; y)I1(u;) where I1(u;) is given by (2), (3) or (4) depending
on @; and monitoring.

We give two matching processes that generate such matching functions. The first is noisy of-
fers: for a contract with indirect utility u;, the agent observes signals s; = u; + €; where €, €, are i.i.d

normal r.v. with variance 1/my?>. The agent is matched with the principal with the higher signal.



The second is Hotelling competition on the unit interval where an agent’s location is uniformly dis-
tributed with marginal traveling cost 1/y. In the latter case one has to be careful with the boundary
values.®

An equilibrium of the competing-principals game is a pair of contracts (w }1, wi, ap), (wfq, w%, a»)
that are mutual best-responses. An equilibrium is symmetric if both principals implement the same
action and give the agent the same indirect utility. We analyze the profits and utilities under sym-

metric equilibria and show in Proposition A.2 that asymmetric equilibria do not exist.

3 Results

We now derive the principals’ equilibrium profits and the agent’s equilibrium utilities.

For any y, consider the auxiliary two-player normal-form games

pug, u_i; y)I(u;)

with strategy spaces [u*, I171(0)], where I1(x;) is given by (2), (3) or (4), respectively. The best

response of principal 1 to u, is to offer indirect utility u, that satisfies the first-order condition
pr(uy, up; MI(uy) + p(uy, up; y)IU'(uy) <0,  uy > u*, with complementary slackness.

Since p;/p is decreasing in u; and —II"(x;)/II(u;) is increasing in u;, the best-response is
unique. Furthermore, Assumption 3 guarantees that for each y there exists a unique symmetric

equilibrium u¢(y) of the auxiliary game such that

) ST

y> —
H(ue(y)) H(u) 5)
e = o i v < ~IT" (")
u'(y)=u"ify < T

Furthermore, u¢(y) is strictly increasing once u(y) > u*. Let u,(y), u"ff (y),uZ(y) solve (5) with

IT = I1,, 117, IIY), respectively.

SUnder noisy offers, p(ui,ur;y) = O(Vrn/2y(u; — uy)), where @ is the standard normal c.d.f. Under Hotelling
competition, p(uy, uz;y) = (1 +y(u; —uy))/2 but it satisfies Assumption 3 only when p(uy, uz;y) € (0, 1). One needs to
select parameter values so that the maximization problem is a concave problem. The normal noise example does not

have any complications.
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Figure 1: Equilibrium utilities of the auxiliary game

The following result is the backbone of this paper.

Lemma 3.1. /. Suppose —% > —2”u—',, for all x, then
037 (ugg () > Ty () ¥y 2 0. (©6)

2. Suppose —’:{L < —2”u—,,l for all x, then there exists y* < —HZ' (g*)/HZ(g) such that

I () > My (u(3)) YO <y <y' (7)
M (i () < () Yy >y )
3.
Me(ur(y) < Mg (up () Yy 2 0. ©)
Remark 3.1. Applications of the Inverse Function Theorem give v/ = 1/u’,v' = —u" [u,v" =

(—=u""u' +3[u’1?)/[u']. Hence

_u/l/(x) ul/(x)

V' is convex & —u" (X' (x) + 3u”(x)* >0 & <=3 Vx. (10)
u’(x) u'(x)

Y ois increasing < —u” (xX)u'(x) + 2u”(x)* >0 & L)) <2 &) Vx, (11)
v u’(x) uw(x)

The ratio —u"" Ju” is called prudence and is key in the study of precautionary savings (see

(1990)).



The intuition for (7) and (8) is as follows. When there is monitoring, the marginal cost for the

principal to offer one more unit of indirect utility when implementing a = H is
V'(c+ u) (12)

When there is no monitoring, the marginal cost is

)+(1 - pu)V (u+c—pH ¢ ) (13)

puv’ (u+c+(1 - pr)
PH — PL

Pa — DL
When v’ is convex, (12) is smaller than (13). Smaller marginal cost translates to higher incentives to
compete. When y is low, proximity to monopoly implies IT¥ (1] (y)) > IIN(u}(y)). When y is high,
however, it couples with different marginal costs of increasing u and makes H% (u% (y) < HZ(uZ(y))
if v’ is sufficiently convex.

The reason why we call u}/(y), u(y) the equilibrium utilities of the auxiliary games rather than
that of the competing-principals game is because that in the latter game the principals need to

determine both the utility to offer and the action to implement. Implementing @ = H is dominant if

Configuration 1. HZ(g) > I, (u) for all u such that I1;(u) > 0.

This is satisfied if ¢ and E; are low. Under Configuration I, the equilibrium profits of the

competing-principals games are

ETI™(y) = 0.5113 (uzy (v)) (14
ETIV(y) = 0.5I1} (u ()

Connecting (14) with (6), (7) and (8) obtains our main result:

Theorem 1. Under Configuration I,

1. When —’;— > —2‘:7,,', the equilibrium profit is always higher when there is monitoring.

2. When —L;— < —22‘{—/,' and there is at least some competition (y > y*), the equilibrium profit is

lower when there is monitoring.
Nevertheless, there are other possible configurations of II;, T}, ITY.

Example 3.1. Let u(x) = x%*. So v(u) = uvs. Set Ey=1,py =08,p. =04,c =0.2. These set
of parameters forces 0.5 < E; < 1. We plot IIN, TI¥ and 11, for E; = 0.5,0.55, 0.6, respectively, in
Figure 2.
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Figure 2: Possible Configurations of Profit Functions

If I (w) > HZ(g) > 0 or I (1) > H% (u) > 0 for some u, the auxiliary game fails to capture
some of the profitable deviations. For example, if IT;(u}(y)) > IIN(u}(y)), it is profitable for a

principal to deviate from implementing a = H. For such y’s, there exists no competing-principals

equilibrium that implements a = H.
We now analyze the equilibrium profits under the two other configurations in Figure 2.

Configuration 2. There exists i € (u*,u) s.t. I (w) < TN (w) for u* < u < @™ and T (u) > TIN (1)

for i < u <u. My(w) < 1Y (w) for all u < u(Ep).

To see for which value of y there is an equilibrium implementing a = H, let

V() = 0510 (upy (),
VELO) = max  p(uy, uly(y); »IL(u).

ui€[ut u(EL)]

VN(y) is the on-path profit of implementing a = H and V},(y) is the optimal deviation profit. A
symmetric equilibrium of implementing a = H exists if and only if V})(y) > V}y, ().

Like-wise, let

Vi(y) = 05T, (u"(y))
V() = max_ p(ur, ur(y); )y (u)

ur€lu,ul
A symmetric equilibrium of implementing a = L exists if and only if V;(y) > V¥ (y). Since

I, (u) < H% (u), it is always optimal to implement @ = H when there is monitoring.

Another possible configuration is



Configuration 3. There exists i € (u*,u) s.t. U (w) < TN (w) for u* < u < @ and T (u) > TIY(u)
for @V < u < u. There exists i € (u*,u(Ey) — c) s.t. Iy (w) < I (w) for u* < u < " and

I (u) > H%(g)for M < u < u(Ey) —c.

In this case, we have to define and analyze VY (y), V}/, (¥), V1,(») in the same fashion, where

V() = 0.5I0) (uy (v))

VM) = max  plup,ub! (v); I (u)
uy€[u*,u(EL)]

Vi) = max  p(up, un(y); )Y (ur)

ur€lu* u(Ep)—cl

An analysis of the value functions gives us
Lemma 3.2. Under Configuration 2 and Configuration 3
1. VN crosses VY, exactly once, from above, at some y"
- VH HL , , H*
2. vy crosses VY, exactly once, from below, at some yY s.t. y¥ < y¥
- VL LH Yy g g Y S-L YV <Yy
In addition, under Configuration 3,
M M M
3. vy crosses vy, exactly once, from above, at some yy;.
M M Mo _ M
4. v crosses vy, exactly once, from below, at some y;' s.t. y;' < yy.

By Lemma 3.2, under Configuration 2, when y € [yY, y¥], both equilibria that implement a = H

and a = L exist when there is no-monitoring. Therefore,

0.5 (ul (v)), y<y;
EIIV(y) = { 0.5T1(ud(y)) or 0.5T1,(u.(y)) depending on selection, y € [yY, y] as)
0.5T1(ur (7)), > iy

ET™(y) = 0.5I1Y (™ (y))

A modified Theorem 1 holds: when there is some competition (y* < y < y¥), the no-monitoring
profit can still be higher than the monitoring profit. Nevertheless, when y > y, (9) implies that the

monitoring equilibrium profit is higher.
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By Lemma 3.2, under Configuration 3, when y € [y}, y¥], both equilibria that implementa = H

and a = L exist when there is monitoring. Hence

0511 (uly (v)), y <y,
ETIY(y) =4 0.5I1(uM(y)) or 0.5I1;(u.(y)) depending on selection, y € [yV, yl
0511, (. (), y>yy
(16)
0511 (ul] (), y<y
EIM(y) ={ 0.511%(uM(y)) or 0.5, (u.(y)) depending on selection, y € [y¥,y¥]
0510, (. (), y>yy

This case is similar to Configuration 2. The major difference is that when the market is sufficiently
competitive (y > max{y}, y}}), the equilibrium profits with or without monitoring are the same

because implementing a = L is the only equilibrium.

Remark 3.2. Since I1}{(u) > 1N (u) for all u > 0, VY. (y) < VI.(y) for all y > 0. Hence y' > y¥.
Whether y} > y¥ depends on u. When —u""w’ + 2u'"* < 0, Lemma 3.1 says V¥ (y) > VN(y) for all
y = 0. Hence y¥ > yN. When —u'"'u’ + 2u"* > 0, V¥(y) < V() for all y such that uli(y) > u*.

Hence y% < y}VI.

(14), (15) and (16) also give us the agent’s equilibrium utilities in the competing-principals
game for different values of y.
Monitoring does not hurt the agent if the market is competitive: since u < u(Ey) — ¢,
-y W T @
My T

(7)

when u is large. This implies that u}/ (y) > u®(y) when y is large (see Figure 1). A similar reasoning
shows that under Configuration 2, u}f(y) > u;(y) when y is large. Under Configuration 3, when
y > max{yy, y}f}, the agent receives u; (y) with or without monitoring.

How monitoring affects the agent when the market is not competitive depends on the utility
function. When prudence is smaller than three times risk aversion, v’ is convex. This implies that
(17) holds for all u and therefore u};(y) > u}(y) for all y. When prudence is larger than three times
risk aversion, v’ is concave. In this case it is possible that

A L)
My T

(18)
when u is small. In such cases, u}(y) > u} (y) when y is low. Below is an example.

11



Example 3.2. Let u(x) = x°°. So that w”u’ /u”"* = (0.9 — 2)/(0.9 — 1) = 11 and v(u) = uds. Set
Ey=4,py =0.8,p, =04,c = 1. We then have

() =4~ (u+ 1)
I (u) = 4 — 0.8(u + 1.5)05 — 0.2(u — 1)is

The ratios =TI} (w)/T1} (w) and —T1Y (u) /TIY (w) for small values of u are plotted in Figure 3.

Figure 3

4 Conclusion

Technological innovations that help businesses extract more surpluses also make their rivals more
competitive. Therefore, what is a monopolist’s meat may be an oligopolist’s poison. Further inves-
tigations to imperfect monitoring, monitoring as a screening device, will shed more light on how

such technologies affect the profitability of industries with information asymmetry.
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A Proofs

Proof of Proposition 2.1. Assumption 2 together with u* < pyu(xy)+ (1 — py)u(x,) —c guarantees
the existence of u.’

We argue that in optimum (IC) binds. Suppose (IC) is slack. The slope of the promise-keeping

pH_ W (wy) PH
I-py u'(wr) I-pu”

and wy > wy, spx < si. Hence we can decrease wy and increase w;, along (PK) so that (IC) is still

Since u is concave

constraint is spx = — and the slope of the iso-profit line is s;; = —

satisfied and profit is increased.

Solving u(wy) and u(w;) from the system below

puuwy) + (1 = ppu(wr) =c+u (PK)
c
u(wy) — u(wr) = (IC)
P — DL
and taking inverses yield
e )
wp=viu+c—py
PH — PL
c
wH:v(g+c+(1—pH) )
PH — PL
Substituting them to (1) yields (4).
Lastly, #’ > 0 and " < 0 imply that v is convex. Hence
1 -
Pu—PpPL PH — DL
1 -
>v(pH(g+c+ ﬂ)+(l —pH)(g+c— pre ))
PH — PL PH — PL
=v(u + ¢).

Therefore, I (u) < I1¥ (). O

Proof of Lemma 3.1. We first prove (6), (7) and (8).
Fix y > 0. There are three possible cases. 1. u* < u}f (y) < ul(y), 2. u* < uli(y) < u}f(y) and 3.
u = up(y) < up(y).

For case 1, it follows from Proposition 2.1 that TI} (u" (y)) > TI} (ul ().

In fact, u = pru(wy) + (1= ppu(w;)—c, where (wy,, w;) solves Ey — ppwy +(1—pp)wy = 0 and u(wy) —u(wy) =

¢/(p — pL)-

13



For case 2, we have / ,
, - W afon _ o)
Iy (v) T (upy ()
Let d be the (unique) number such that

V()
"~ Ey—v(d)

(19)

Since —I1¥ (u)/T1¥ (w) > v'(w)/(En — v(w)) for all u, we have ul(y) + ¢ = d. Hence I} (uM(y)) =

Eylx] —v(d).
Consider the curve on the u;-u, plane implicitly defined by
__puV' ) + (= py)V'(ur)
~ Ey—prv(n) — (1 = pa)v(uy)’

which passes a = (d,d) and b = (ufl(y) +c+ puc/(py — pL), u}VI(y) + ¢ — puc/(py — pL)) because

of (19). Let {(u; (1), ux(t)), t € [0, 1]} be a differentiable monotone parametrization of the curve such

that (#1(0), u»(0)) = a and (u;(1), u(1)) = b. The slope of the curve is
duy _ prY' 1)y + puv” (u1)
du, (I = p)v' )y + (1 = pu)v”(u2)
hence u;(t) > u,(t) for t € (0, 1].
Define F : [0,1] — R by

<0,

F(1) = Ey — puv(ui (1) — (1 = pa)v(ua(2)).
Then F(0) = T1¥ (! (y)) and F(1) = [1Y(u}(y)). Therefore,
F'(1) > 0 forall £ € (0, 1] = TINuN()) > T (uk ()
F'(t) < Oforall € (0, 1] = MY () < I (ul ).

To this end, note that

du(t du(t
F@=ww@ﬂ»$p—ﬂ—mwww)£)
Using (20), we have
F'(t)y>0
Sdw __pu V)
du, 1 = puv'(u)
puv' (w)y + ppv'’(uy) <__Pu v (uy)

(= paV )y + (1= pav'(uz) 1= pyv'(uy)
LV n@) v )
V(1) v (ua(0)

14
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Since u;(t) > u,(¢) for t € (0, 1], it follows from (11) that in Case 2,

1244 4

u u

= — > =2V = Ty () > Ty () @1)
u/l/ u//

- <2—Vx s Y (uy () < TN (). (22)

We now prove (6). If y is in case 1 then we are done. Case 2 follows from (21). If y is in case 3,
raise y from zero to —II (u*)/T1Y(«*). During the process ITY (1 (1)) stays constant at [T} (u*) and
I} (ud! (y)) decreases to something still larger than IT}(u*) because of (19) and (21).

We then prove (7) and (8). y cannot be in Case 1 because —u'”’u’ + 2u’”> > 0 implies that V' is
convex, which then implies —ITY /TI¥ > —IT¥'/T1}. Case 2 follows from (22). If y is in case 3, the
same continuity argument as above, together with (19) and (22), gives y*.

Next, we prove (9).

Let y > 0. There are three possible cases. 1. u* < min{u,(y), u%(y)}, 2.u" = uAHl(y) < u;(y) and
3.0 = w(y) < ulf).

In case 1, we have

_ V) Vagm+o V@)
T E v w0)  En—vall0)+ 0  Eq—v(d)

(23)

for some unique d. Since v'(u)/(Ep — v(w)) > V'(u)/(Eg — v(u)), u.(y) < d. Since v/ > 0, (23)

implies

gy = V080D V@

= T3 (uyy ()
In case 2, we have
T (ur () < Tp(') < Ty (u”) = Ty gy (v)).

where the second inequality is from Assumption 1.
In case 3, we can increase y until we are in Case 1, where I1; < H’g . In this process, 11 (u.(y)) =
I, (u*) and I1¥ (uf(y)) is decreasing. Hence IT;(ur(y)) < IIM (ud (y)). ]

Lemma 3.2 follows from the following result.

Proposition A.1. Let I1,(-),I1,(-) be two twice-differentiable concave decreasing functions such
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that I1,(u) > I,(u) for u < @ and I1,(u) < I,(w) for u > i, where I1,(it) > 0 and it > u*. Let

Va(y) = 0.54(ua(y))

VP = max  p(u, u,(y); y),(u)
uelw ;1 (0)]

Vi (y) = 0.5I1, (u(y))

Vi) = max  p(u, up(y); y)IL,(u)
uelu 1171(0)]

where u,(y), uy(y) solve (5) when Il = I1,, 11, respectively. Then V,(y) crosses Vg (v) exactly once,

from above, at some y,, Vy(y) crosses V(y) exactly once, from below, at some y,. Finally, y, < y,.

Proof. For y such that u,(y) = u*, V,(y) > Vf (v). For y such that u,(y) > i, V,(y) < 0.5I1,(u,(y)) <
VP(y). Hence V, crosses V¥ from above at some y, where y, > —I1/(u)/T1,(x).

To show that they cross exactly once, it suffices to show that V’(y) < V¥ (y) whenever V,(y) =
VE(y). Let y, be a crossing point. Let u, = u,(y,) and u’ be such that Vo(y,) = p(u’, uy; y) I, (ub).
Then it must be

U, < it < ul. (24)

and at least one is a strict inequality.® By the envelope theorem,

VI(Va) = (P2(Uas Uas Yo)ul,(Va) + P3(Uta, ta; ya))a(uty)
VE (32 = (02l s YU, (va) + p3 (U, gy ya))p(l)

Using p(ug, ta; yo)la(ttg) = pl, uy; y)T1p(ul), we have

Viba) < VE(Oa)
o P2t s ya) P3(as a3 Ya) _ Wb ug;ya)

u,(ya) +

Wy 4 P30 U Vo)
PUg, Uy ya) ¢ PUa,ugsye) — pb,ugy.) ¢

P, ugsya)

which follows from Assumption 3. An identical argument shows that V,, crosses V¢, exactly once,

Va) +

from below, at some y,. Moreover, at yy, u;(y,) < it < u,(y,) with at least one strict inequality.
Next, we show y, < y,. Since V), crosses V} aty, from below, it suffices to show V}/(y,) < Vi(ya).
To see this, let
Wa(up) = max P, uz, o)l (1)

(25)
Wi (uy) = max pu, uz, y I, (u).

8 If both are equalities, FOC implies y, = —é‘[ (f;;) = }E’(%) Since I, (i) = I, (i), this contradicts IT;, (1) < IT; (@1).

9 Assumption 3 implies p, < 0, pa/p is increasing in uy, p3(uy, uy;y,) = 0 and p3 > 0 when u; > u,.
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Then W,(-), W,(-) are decreasing and

Wa(tta3a)) = Vaa) = Vo (Va) = Wy(tta(ya)) (26)
Waup(ya)) = Viy(va)s  Wiup(ya)) = Vi(ya). 27)

We now prove two claims:

Claim 1 u,(y,) < up(y.)

Claim 2 W, (u) = Wy(u) = W (u) < W, ().
Vi(va) < Vi(ya) will follows from the two claims because of (26) and (27).
Proof of Claim I: Claim 1 follows from that —II} (u)/II,(u) is increasing and that

0 _ T w00)
H;(ub(ya)) Ya Hb(ua(ya)) ’

where the equality is (5) and the inequality follows from decreasing uZ to u,(y,) (recall (24)) from
both sides of the FOC of u?:
i uva);ye) L)) o
Pl ua(ya)iye)  Tp(ub)
Proof of Claim 2: Let u, solve W,(u) and u;, solve Wj(u). Assume W,(u) = W,(u). Then

Wa(u) = pua, u; ya)lla(ua) = pQuy, w3y, (up) = Wiy(u) (28)

Moreover, (24) holds: u, < u,. The envelope theorem implies W/ (1) = py(u,, u;y,)I1,(u,) and

W, () = pa(up, u; yo)I1,(up). Substituting in (28) and rearranging, we have

W (u) < Wj(u)
@pz(ua, u;ya) - Doy, U3 y4)
P(ug,u;y,)  plup, u;y,)

which follows from Assumption 3 and u, < u,. O
Proposition A.2. The competing-principals game does not have an asymmetric equilibrium.

Proof. We prove two claims, from which non-existence follows.
Claim 1: There is no asymmetric equilibria (wy,, w}, a), (W, wi,az) in which a; = a,.

Claim 2: There is no asymmetric equilibria (w},, w}, a;), (W4, wi,az) in whicha; = H and a, = L.

10 Assumption 3 implies p;/p is decreasing in u;. So when one decreases u” to u,(y,), the LHS (left hand side)

increases to y, while the RHS decreases to —IT (u4(y4))/T1p(ua(Va))-
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Proof of Claim 1: Suppose there is such an equilibrium for some y. Let a; = a; = a and u;, u,
be the indirect utilities with u; < u,. Let I1,(u) be the relevant profit function (I1,, H% , HZ). Then
(5) implies

. H/
Pl(”laMZ,y) < - a(ul)’ul ZZ*, C.S.
p(ur, uz;y) T, (uy)
pi(uz, ugsy) _ G (up)
p(uz, u;y) I, (u2)

(29)

Assumption 3 implies that
pi(uy, uz;y) S pi(ua, ui3y)

plur,uzyy) — plus,urzy)’

together with (29) we have
M) M)

< )
Ha (MZ) Ha (ul )
contradicting that —IT/ («)/I1,(u) is increasing.

Proof of Claim 2: Suppose there is such an equilibrium for some y. Then IT; has to cross IT}
or IT}Y depending on whether there is monitoring. We prove the former case; the latter is identical.

Let u;, u, be the equilibrium indirect utilities. Then
u < i <up

and one of the inequalities are strict.'! This implies that #; < u,. Under an equilibrium, principal 1
does not want to deviate to implement a = L given that principal 2 offers u,, and principal 2 does

not want to deviate to implement a = H either. Hence

Wr(up) > Wi(uy)
Wir(ui) > Wy(uy)

(30)

where Wy, W, are defined as in (25) with II, = HIFVI and Il, = II;,. However, since u; < us,
(30) implies that Wy crosses W, from below at some u € [uy,u,]. This contradicts Claim 2 of

Proposition A.1. O
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