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Abstract

Do monitoring technologies increase a principal’s profits if he has to compete with others

for an agent? While monitoring improves the risk-incentive tradeoff, it also reduces the costs

for a rivaling principal to offer a more attractive contract. We show that when the agent’s

prudence is smaller than two times risk aversion, equilibrium profits are lower when monitoring

is available if there is some competition. When prudence is larger than two times risk aversion,

equilibrium profits are higher when motoring is available. Conversely, the agent benefits from

monitoring when competition is intense but can be hurt when it is mild.

JEL Classification: D81, D82, D86

Keywords: competition, monitoring, moral hazard, prudence

1 Introduction

Recent technological breakthroughs enable principals to monitor the agents’ private actions better.

By the end of 2018, it is estimated that eighty percent of new cars for sale in the U.S. will come with

on-board telematics devices and, by 2020, seventy percent of all auto insurers will use telematics.1

The Chinese conglomerate Alibaba, which owns an insurance franchise, collects client data through

∗California State University, Fullerton. jenwenc@gmail.com
1https://www.naic.org/documents/consumer_alert_understanding_usage_based_insurance.htm
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mobile apps tied to other services it offers: finance, e-commerce, and map services. Wearable

devices have also begun to make their ways to the health insurance industry (Raber et al. (2019)).

UPS even finds monitoring its drivers an effective way to raise their productivity.2

Does monitoring technology bring more profits to principals when they compete with each other

for an agent? While monitoring makes the risk-incentive tradeoff more efficient, larger surpluses

also make it easier for rivaling principals to offer a more competitive contract. Hence it is unclear

whether those technological breakthroughs increase competing principals’ profits. We answer this

question in a canonical agency model.

Consider a model in which risk-neutral principals contract exclusively with a risk-averse agent.

The agent’s actions determine the probabilities of good and bad outcomes. The principals attract

the agent through the indirect utilities offered by the contracts. When there is no monitoring, the

contracts have to be incentive compatible. When there is monitoring, incentive compatibility can

be ignored. Competition intensity is captured by a parameter akin to the inverse of traveling costs

in a Hotelling model so that the higher the intensity, the stronger the incentives for a principal to

offer a more attractive contract.

We find that when the agent’s prudence (−u′′′/u′′) is smaller than three times risk aversion

(−u′′/u′), the marginal cost of increasing the utility offered is smaller when there is monitoring.

When prudence is smaller than two times risk aversion (e.g., CARA utilities), sufficiently-intense

competition, coupled with the smaller marginal cost, makes the equilibrium profits with monitoring

lower than that without monitoring. When the opposite condition holds, however, monitoring leads

to higher equilibrium profits.3 Conversely, the agent is not hurt by monitoring if competition is

sufficiently intense but may receive lower utilities with monitoring when competition is mild.

We assume that monitoring, when available, is costless. This ensures that for each level of

indirect utility promised to the agent, the principal’s profit, conditional on a successful hire, is

higher than the no-monitoring profit. Thus, even if monitoring (telematics devices, wearables) is

an endogenous part of the contract, it is dominant for a principal to use it provided that the agent is

not averse of being monitored.4 Therefore, we take monitoring, or lack thereof, as exogenous.

2https://www.npr.org/sections/money/2014/04/17/303770907/
3Similar conditions have long appeared in the economics of uncertainty. For example, the case k = 1 of the

inequality −u′′′u′ + ku′′2 ≤ 0 dates back to Pratt (1964) and the case k = 2 is studied in Gollier (2004).
4For any no-monitoring contract with agent utility u, the principal can instead choose a monitoring contract that

promises the agent with a utility of u + ε so that both the principal and the agent get better-off. This logic breaks down

when there are two types of agents. For example, Jin & Vasserman (2019) find that in the U.S. auto insurance market,
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The Literature This paper relates to the study of competition in markets with asymmetric

information (Rothschild & Stiglitz (1976),Arnott & Stiglitz (1991),Biglaiser & Mezzetti (1993)).

Those papers impose zero-profit conditions (i.e., perfect competition or Bertrand competition) and

focus instead on who contract with which agent, the implemented effort level, etc. Imperfect com-

petition models, which are indispensable to study profits, have appeared in the study of banking

competitions (e.g., Villas-Boas & Schmidt-Mohr (1999)) and more recently in (Bénabou & Tirole

(2016)) and (Mahoney & Weyl (2017)).

Villas-Boas & Schmidt-Mohr (1999) is also the first to show that more information may lead to

lower profits. They show in a model of Hotelling competition between banks with adverse selection

that the profits under asymmetric information can be higher or lower than that under symmetric

information, depending on how low the low type is. Nevertheless, the literature has shown little

interest in pursuing this question.

The effect of reducing information asymmetry on welfare in a competitive environment has also

received some attention. Baltzer (2012) shows, in a model of Bertrand competition with product

quality, that the welfare under asymmetric information is higher than that under full information.

Lester et al. (2019) show in an adverse selection model that reducing information asymmetries can

worsen the distortions from adverse selection.

The interplay of monitoring, or more generally, the precision of the agent’s performance signal,

with other endogenous variables in agency models, has also been investigated. Demougin & Fluet

(2001) study the optimal monitoring-money incentive mix to induce efforts. Chaigneau et al. (2018)

show that precision could lead to less agent effort.

We study, in a moral hazards model, how the absence or presence of the incentive compatibility

constraint affect the principals’ profits for different levels of competition intensity.

We state the model in Section 2, present the results in Section 3 and conclude in Section 4.

Proofs are in the Appendix.

2 Model

Two principals, i = 1, 2, compete to hire an agent for a task through exclusive contracts.

The agent has a three-times differentiable utility function u : [0,∞) → R with u′ > 0, u′′ < 0

and u−1 = v. The total surplus is xH in the high state and xL in the low state, with xH > xL > 0.

only safe drivers self-select to be monitored.
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The agent chooses an action a ∈ {L,H} that results in probability pa ending up in the high state,

with 0 < pL < pH < 1 and expected surplus Ea = paxH + (1 − pa)xL. Action a has cost ca where

cH = c > 0 and cL = 0.

A contract is a tuple (wH,wL, a) where wH,wL are the wages the agent gets when the state is

high or low and a is the implemented action.5

The expected utility of the agent under contract (wH,wL, a) is

pau(wH) + (1 − pa)u(wL) − ca.

The agent’s autarky utility is u∗ ∈ [0, pHu(xH) + (1 − pH)u(xL) − c]. In an insurance model

u∗ = pHu(xH) + (1 − pH)u(xL) − c but in a delegation model u∗ = 0 is also reasonable.

The profit of a principal if an agent signs up a contract that implements action a is

Πa = Ea − pawH − (1 − pa)wL (1)

A contract implementing a promises the agent an utility of u if

pau(wH) + (1 − pa)u(wL) − ca = u (PK)

The feasible set of u when implementing a = L is [u∗, u(EL)], where the lower bound ensures

individual rationality and the upper bound ensures non-negative profit. The feasible set when im-

plementing a = H when there is monitoring is [u∗, u(EH) − c].

Implementing a = L with or without monitoring and implementing a = H with monitoring

are straightforward. The risk-neutral principal gives the risk-averse agent a constant wage w with

u(w) − ca = u and obtains optimal profits

ΠL(u) = EL − v(u) (2)

when implementing L and

ΠM
H (u) = EH − v(u + c) (3)

when implementing a = H with monitoring.

To make the model non-trivial, we assume that when there is monitoring, implementing a = H

is more profitable for some u ≥ u∗, which holds if c is sufficiently small.

Assumption 1. ΠM
H (u∗) > ΠL(u∗).

5The model is isomorphic to an insurance model in which a contract specifies a deductible and a premium.
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When there is no monitoring, a contract that implements the costly action a = H has to be

incentive-compatible:

pHu(wH) + (1 − pH)u(wL) − c ≥ pLu(wH) + (1 − pL)u(wL). (IC)

In particular, constant wage violates (IC).

Assume that the agent is incentivized if he owns the project.

Assumption 2. pHu(xH) + (1 − pH)u(xL) − c > pLu(xH) + (1 − pL)u(xL).

This guarantees the existence of an IC contract that gives positive profit.

Proposition 2.1. When there is no monitoring, there exists u > u∗ such that for u ∈ [u∗, u], a

contract implementing a = H that maximizes (1) subject to (PK) and (IC) exists. The optimal profit

is

ΠN
H(u) = EH − pHv

(
u + c +

(1 − pH)c
pH − pL

)
− (1 − pH)v

(
u + c −

pHc
pH − pL

)
(4)

with ΠN
H(u) = 0. Furthermore, ΠM

H (u) > ΠN
H(u) for all u.

Competition is modeled by a matching function. Let u1, u2 be the utilities each principal offers.

The probability that principal i is matched with the agent is given by a twice-differentiable matching

function p(ui, u−i; y) with matching efficiency parameter y ≥ 0 such that

Assumption 3.

1. p(u1, u2; y) + p(u2, u1; y) = 1.

2. p1 = ∂p(u1, u2; y)/∂u1 ≥ 0, p3 = ∂p(u1, u2; y)/∂y > 0 when u1 > u2.

3. p1(u1, u2; y)/p(u1, u2; y) is decreasing in u1, p2(u1, u2; y)/p(u1, u2; y) is increasing in u1 and

p1(u, u; y)/p(u, u; y) = y.

Principal i’s expected profit is p(ui, u−i; y)Π(ui) where Π(ui) is given by (2), (3) or (4) depending

on ai and monitoring.

We give two matching processes that generate such matching functions. The first is noisy of-

fers: for a contract with indirect utility ui, the agent observes signals si = ui + εi where ε1, ε2 are i.i.d

normal r.v. with variance 1/πy2. The agent is matched with the principal with the higher signal.
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The second is Hotelling competition on the unit interval where an agent’s location is uniformly dis-

tributed with marginal traveling cost 1/y. In the latter case one has to be careful with the boundary

values.6

An equilibrium of the competing-principals game is a pair of contracts (w1
H,w

1
L, a1), (w2

H,w
2
L, a2)

that are mutual best-responses. An equilibrium is symmetric if both principals implement the same

action and give the agent the same indirect utility. We analyze the profits and utilities under sym-

metric equilibria and show in Proposition A.2 that asymmetric equilibria do not exist.

3 Results

We now derive the principals’ equilibrium profits and the agent’s equilibrium utilities.

For any y, consider the auxiliary two-player normal-form games

p(ui, u−i; y)Π(ui)

with strategy spaces [u∗,Π−1(0)], where Π(ui) is given by (2), (3) or (4), respectively. The best

response of principal 1 to u2 is to offer indirect utility u1 that satisfies the first-order condition

p1(u1, u2; y)Π(u1) + p(u1, u2; y)Π′(u1) ≤ 0, u1 ≥ u∗, with complementary slackness.

Since p1/p is decreasing in u1 and −Π′(u1)/Π(u1) is increasing in u1, the best-response is

unique. Furthermore, Assumption 3 guarantees that for each y there exists a unique symmetric

equilibrium ue(y) of the auxiliary game such that

y =
−Π′(ue(y))
Π(ue(y))

if y >
−Π′(u∗)
Π(u∗)

ue(y) = u∗ if y ≤
−Π′(u∗)
Π(u∗)

(5)

Furthermore, ue(y) is strictly increasing once ue(y) > u∗. Let uL(y), uM
H (y), uN

H(y) solve (5) with

Π = ΠL,Π
M
H ,Π

N
H, respectively.

6Under noisy offers, p(u1, u2; y) = Φ(
√
π/2y(u1 − u2)), where Φ is the standard normal c.d.f. Under Hotelling

competition, p(u1, u2; y) = (1 + y(u1 − u2))/2 but it satisfies Assumption 3 only when p(u1, u2; y) ∈ (0, 1). One needs to

select parameter values so that the maximization problem is a concave problem. The normal noise example does not

have any complications.
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Figure 1: Equilibrium utilities of the auxiliary game

The following result is the backbone of this paper.

Lemma 3.1. 1. Suppose −u′′′
u′′ > −2 u′′

u′ for all x, then

ΠM
H (uM

H (y)) > ΠN
H(uN

H(y)) ∀y ≥ 0. (6)

2. Suppose −u′′′
u′′ < −2 u′′

u′ for all x, then there exists y∗ < −ΠN′
H (u∗)/ΠN

H(u) such that

ΠM
H (uM

H (y)) > ΠN
H(uN

H(y)) ∀0 ≤ y < y∗ (7)

ΠM
H (uM

H (y)) < ΠN
H(uN

H(y)) ∀y > y∗. (8)

3.

ΠL(uL(y)) < ΠM
H (uM

H (y)) ∀y ≥ 0. (9)

Remark 3.1. Applications of the Inverse Function Theorem give v′ = 1/u′, v′′ = −u′′/u′3, v′′′ =

(−u′′′u′ + 3[u′′]2)/[u′]5. Hence

v′ is convex⇔ −u′′′(x)u′(x) + 3u′′(x)2 > 0⇔
−u′′′(x)
u′′(x)

< −3
u′′(x)
u′(x)

∀x. (10)

v′′

v′
is increasing ⇔ −u′′′(x)u′(x) + 2u′′(x)2 > 0⇔

−u′′′(x)
u′′(x)

< −2
u′′(x)
u′(x)

∀x, (11)

The ratio −u′′′/u′′ is called prudence and is key in the study of precautionary savings (see Kimball

(1990)).
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The intuition for (7) and (8) is as follows. When there is monitoring, the marginal cost for the

principal to offer one more unit of indirect utility when implementing a = H is

v′(c + u) (12)

When there is no monitoring, the marginal cost is

pHv′
(
u + c + (1 − pH)

c
pH − pL

)
+ (1 − pH)v′

(
u + c − pH

c
pH − pL

)
(13)

When v′ is convex, (12) is smaller than (13). Smaller marginal cost translates to higher incentives to

compete. When y is low, proximity to monopoly implies ΠM
H (uM

H (y)) > ΠN
H(uN

H(y)). When y is high,

however, it couples with different marginal costs of increasing u and makes ΠM
H (uM

H (y)) < ΠN
H(uN

H(y))

if v′ is sufficiently convex.

The reason why we call uM
H (y), uN

H(y) the equilibrium utilities of the auxiliary games rather than

that of the competing-principals game is because that in the latter game the principals need to

determine both the utility to offer and the action to implement. Implementing a = H is dominant if

Configuration 1. ΠN
H(u) > ΠL(u) for all u such that ΠL(u) > 0.

This is satisfied if c and EL are low. Under Configuration 1, the equilibrium profits of the

competing-principals games are

EΠM(y) = 0.5ΠM
H (uM

H (y))

EΠN(y) = 0.5ΠN
H(uN

H(y))
(14)

Connecting (14) with (6), (7) and (8) obtains our main result:

Theorem 1. Under Configuration 1,

1. When −u′′′
u′′ > −2u′′

u′ , the equilibrium profit is always higher when there is monitoring.

2. When −u′′′
u′′ < −2u′′

u′ and there is at least some competition (y > y∗), the equilibrium profit is

lower when there is monitoring.

Nevertheless, there are other possible configurations of ΠL,Π
M
H ,Π

N
H.

Example 3.1. Let u(x) = x0.4. So v(u) = u
1

0.4 . Set EH = 1, pH = 0.8, pL = 0.4, c = 0.2. These set

of parameters forces 0.5 ≤ EL < 1. We plot ΠN
H,Π

M
H and ΠL for EL = 0.5, 0.55, 0.6, respectively, in

Figure 2.
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Figure 2: Possible Configurations of Profit Functions

If ΠL(u) > ΠN
H(u) > 0 or ΠL(u) > ΠM

H (u) > 0 for some u, the auxiliary game fails to capture

some of the profitable deviations. For example, if ΠL(uN
H(y)) > ΠN

H(uN
H(y)), it is profitable for a

principal to deviate from implementing a = H. For such y’s, there exists no competing-principals

equilibrium that implements a = H.

We now analyze the equilibrium profits under the two other configurations in Figure 2.

Configuration 2. There exists ũN ∈ (u∗, u) s.t. ΠL(u) < ΠN
H(u) for u∗ < u < ũN and ΠL(u) > ΠN

H(u)

for ũN < u < u. ΠL(u) < ΠM
H (u) for all u ≤ u(EL).

To see for which value of y there is an equilibrium implementing a = H, let

VN
H (y) = 0.5ΠN

H(uN
H(y)),

VN
HL(y) = max

u1∈[u∗,u(EL)]
p(u1, uN

H(y); y)ΠL(u1).

VN
H (y) is the on-path profit of implementing a = H and VN

HL(y) is the optimal deviation profit. A

symmetric equilibrium of implementing a = H exists if and only if VN
H (y) ≥ VN

HL(y).

Like-wise, let

VL(y) = 0.5ΠL(uL(y))

VN
LH(y) = max

u1∈[u∗,u]
p(u1, uL(y); y)ΠN

H(u1)

A symmetric equilibrium of implementing a = L exists if and only if VL(y) ≥ VN
LH(y). Since

ΠL(u) < ΠM
H (u), it is always optimal to implement a = H when there is monitoring.

Another possible configuration is

9



Configuration 3. There exists ũN ∈ (u∗, u) s.t. ΠL(u) < ΠN
H(u) for u∗ < u < ũN and ΠL(u) > ΠN

H(u)

for ũN < u < u. There exists ũM ∈ (u∗, u(EH) − c) s.t. ΠL(u) < ΠM
H (u) for u∗ < u < ũM and

ΠL(u) > ΠM
H (u) for ũM < u < u(EH) − c.

In this case, we have to define and analyze V M
H (y),V M

HL(y),V M
LH(y) in the same fashion, where

V M
H (y) = 0.5ΠM

H (uM
H (y))

V M
HL(y) = max

u1∈[u∗,u(EL)]
p(u1, uM

H (y); y)ΠL(u1)

V M
LH(y) = max

u1∈[u∗,u(EH)−c]
p(u1, uL(y); y)ΠM

H (u1)

An analysis of the value functions gives us

Lemma 3.2. Under Configuration 2 and Configuration 3

1. vN
H crosses vN

HL exactly once, from above, at some yN
H.

2. vL crosses vN
LH exactly once, from below, at some yN

L s.t. yN
L < yN

H

In addition, under Configuration 3,

3. vM
H crosses vM

HL exactly once, from above, at some yM
H .

4. vL crosses vM
LH exactly once, from below, at some yM

L s.t. yM
L < yM

H .

By Lemma 3.2, under Configuration 2, when y ∈ [yN
L , y

N
H], both equilibria that implement a = H

and a = L exist when there is no-monitoring. Therefore,

EΠN(y) =


0.5ΠN

H(uN
H(y)), y < yN

L

0.5ΠN
H(uN

H(y)) or 0.5ΠL(uL(y)) depending on selection, y ∈ [yN
L , y

N
H]

0.5ΠL(uL(y)), y > yN
H

EΠM(y) = 0.5ΠM
H (uM(y))

(15)

A modified Theorem 1 holds: when there is some competition (y∗ < y < yN
H), the no-monitoring

profit can still be higher than the monitoring profit. Nevertheless, when y > yN
H, (9) implies that the

monitoring equilibrium profit is higher.
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By Lemma 3.2, under Configuration 3, when y ∈ [yM
L , y

M
H ], both equilibria that implement a = H

and a = L exist when there is monitoring. Hence

EΠN(y) =


0.5ΠN

H(uN
H(y)), y < yN

L

0.5ΠN
H(uN

H(y)) or 0.5ΠL(uL(y)) depending on selection, y ∈ [yN
L , y

N
H]

0.5ΠL(uL(y)), y > yN
H

EΠM(y) =


0.5ΠM

H (uM
H (y)), y < yM

L

0.5ΠM
H (uM

H (y)) or 0.5ΠL(uL(y)) depending on selection, y ∈ [yM
L , y

M
H ]

0.5ΠL(uL(y)), y > yM
H

(16)

This case is similar to Configuration 2. The major difference is that when the market is sufficiently

competitive (y > max{yN
H, y

M
H }), the equilibrium profits with or without monitoring are the same

because implementing a = L is the only equilibrium.

Remark 3.2. Since ΠM
H (u) > ΠN

H(u) for all u ≥ 0, VN
LH(y) < V M

LH(y) for all y ≥ 0. Hence yM
L > yN

L .

Whether yM
H > yN

H depends on u. When −u′′′u′ + 2u′′2 < 0, Lemma 3.1 says V M
H (y) > VN

H (y) for all

y ≥ 0. Hence yM
H > yN

H. When −u′′′u′ + 2u′′2 > 0, V M
H (y) < VN

H (y) for all y such that uN
H(y) > u∗.

Hence yM
H < yN

H.

(14), (15) and (16) also give us the agent’s equilibrium utilities in the competing-principals

game for different values of y.

Monitoring does not hurt the agent if the market is competitive: since u < u(EH) − c,

−ΠN′
H (u)

ΠN
H(u)

>
−ΠM′

H (u)
ΠM

H (u)
(17)

when u is large. This implies that uM
H (y) > uN

H(y) when y is large (see Figure 1). A similar reasoning

shows that under Configuration 2, uM
H (y) > uL(y) when y is large. Under Configuration 3, when

y > max{yN
H, y

M
H }, the agent receives uL(y) with or without monitoring.

How monitoring affects the agent when the market is not competitive depends on the utility

function. When prudence is smaller than three times risk aversion, v′ is convex. This implies that

(17) holds for all u and therefore uM
H (y) ≥ uN

H(y) for all y. When prudence is larger than three times

risk aversion, v′ is concave. In this case it is possible that

−ΠN′
H (u)

ΠN
H(u)

<
−ΠM′

H (u)
ΠM

H (u)
(18)

when u is small. In such cases, uN
H(y) > uM

H (y) when y is low. Below is an example.
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Example 3.2. Let u(x) = x0.9. So that u′′′u′/u′′2 = (0.9 − 2)/(0.9 − 1) = 11 and v(u) = u
1

0.9 . Set

EH = 4, pH = 0.8, pL = 0.4, c = 1. We then have

ΠM
H (u) = 4 − (u + 1)

1
0.9

ΠN
H(u) = 4 − 0.8(u + 1.5)

1
0.9 − 0.2(u − 1)

1
0.9

The ratios −ΠM′
H (u)/ΠM

H (u) and −ΠN′
H (u)/ΠN

H(u) for small values of u are plotted in Figure 3.

Figure 3

4 Conclusion

Technological innovations that help businesses extract more surpluses also make their rivals more

competitive. Therefore, what is a monopolist’s meat may be an oligopolist’s poison. Further inves-

tigations to imperfect monitoring, monitoring as a screening device, will shed more light on how

such technologies affect the profitability of industries with information asymmetry.
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A Proofs

Proof of Proposition 2.1. Assumption 2 together with u∗ ≤ pHu(xH)+(1− pH)u(xL)−c guarantees

the existence of u.7

We argue that in optimum (IC) binds. Suppose (IC) is slack. The slope of the promise-keeping

constraint is sPK = −
pH

1−pH

u′(wH)
u′(wL) and the slope of the iso-profit line is sΠ = −

pH
1−pH

. Since u is concave

and wH > wL, sPK < sΠ. Hence we can decrease wH and increase wL along (PK) so that (IC) is still

satisfied and profit is increased.

Solving u(wH) and u(wL) from the system below

pHu(wH) + (1 − pH)u(wL) = c + u (PK)

u(wH) − u(wL) =
c

pH − pL
(IC)

and taking inverses yield

wL = v
(
u + c − pH

c
pH − pL

)
wH = v

(
u + c + (1 − pH)

c
pH − pL

)
Substituting them to (1) yields (4).

Lastly, u′ > 0 and u′′ < 0 imply that v is convex. Hence

pHv
(
u + c +

(1 − pH)c
pH − pL

)
+ (1 − pH)v

(
u + c −

pHc
pH − pL

)
>v

(
pH

(
u + c +

(1 − pH)c
pH − pL

)
+ (1 − pH)

(
u + c −

pHc
pH − pL

))
=v(u + c).

Therefore, ΠN
H(u) < ΠM

H (u). �

Proof of Lemma 3.1. We first prove (6), (7) and (8).

Fix y ≥ 0. There are three possible cases. 1. u∗ ≤ uM
H (y) ≤ uN

H(y), 2. u∗ < uN
H(y) < uM

H (y) and 3.

u∗ = uN
H(y) < uM

H (y).

For case 1, it follows from Proposition 2.1 that ΠM
H (uM(y)) > ΠN

H(uN
H(y)).

7In fact, u = pHu(w∗H)+ (1− pH)u(w∗L)−c, where (w∗H ,w
∗
L) solves EH − pHwH + (1− pH)wL = 0 and u(wH)−u(wL) =

c/(pH − pL).
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For case 2, we have

y =
ΠM′

H (uM
H (y))

ΠM
H (uM

H (y))
=

ΠN′
H (uN

H(y))
ΠN

H(uN
H(y))

. (19)

Let d be the (unique) number such that

y =
v′(d)

EH − v(d)

Since −ΠM′
H (u)/ΠM

H (u) > v′(u)/(EH − v(u)) for all u, we have uM
H (y) + c = d. Hence ΠM

H (uM
H (y)) =

EH[x] − v(d).

Consider the curve on the u1-u2 plane implicitly defined by

y =
pHv′(u1) + (1 − pH)v′(u2)

EH − pHv(u1) − (1 − pH)v(u2)
,

which passes a = (d, d) and b = (uN
H(y) + c + pHc/(pH − pL), uN

H(y) + c − pHc/(pH − pL)) because

of (19). Let {(u1(t), u2(t)), t ∈ [0, 1]} be a differentiable monotone parametrization of the curve such

that (u1(0), u2(0)) = a and (u1(1), u2(1)) = b. The slope of the curve is
du2

du1
= −

pHv′(u1)y + pHv′′(u1)
(1 − pH)v′(u2)y + (1 − pH)v′′(u2)

< 0, (20)

hence u1(t) > u2(t) for t ∈ (0, 1].

Define F : [0, 1]→ R by

F(t) = EH − pHv(u1(t)) − (1 − pH)v(u2(t)).

Then F(0) = ΠM
H (uM

H (y)) and F(1) = ΠN
H(uN

H(y)). Therefore,

F′(t) > 0 for all t ∈ (0, 1]⇒ ΠN
H(uN

H(y)) > ΠM
H (uM

H (y))

F′(t) < 0 for all t ∈ (0, 1]⇒ ΠN
H(uN

H(y)) < ΠM
H (uM

H (y)).

To this end, note that

F′(t) = −pHv′(u1(t))
du1(t)

dt
− (1 − pH)v′(u2(t))

du2(t)
dt

Using (20), we have

F′(t) > 0

⇔
du2

du1
< −

pH

1 − pH

v′(u1)
v′(u2)

⇔−
pHv′(u1)y + pHv′′(u1)

(1 − pH)v′(u2)y + (1 − pH)v′′(u2)
< −

pH

1 − pH

v′(u1)
v′(u2)

⇔
v′′(u1(t))
v′(u1(t))

>
v′′(u2(t))
v′(u2(t))
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Since u1(t) > u2(t) for t ∈ (0, 1], it follows from (11) that in Case 2,

−
u′′′

u′′
> −2

u′′

u′
∀x⇒ ΠM

H (uM
H (y)) > ΠN

H(uN
H(y)) (21)

−
u′′′

u′′
< −2

u′′

u′
∀x⇒ ΠM

H (uM
H (y)) < ΠN

H(uN
H(y)). (22)

We now prove (6). If y is in case 1 then we are done. Case 2 follows from (21). If y is in case 3,

raise y from zero to −ΠN′
H (u∗)/ΠN

H(u∗). During the process ΠN
H(uN

H(y)) stays constant at ΠN
H(u∗) and

ΠM
H (uM

H (y)) decreases to something still larger than ΠN
H(u∗) because of (19) and (21).

We then prove (7) and (8). y cannot be in Case 1 because −u′′′u′ + 2u′′2 > 0 implies that v′ is

convex, which then implies −ΠN′
H /Π

N
H > −ΠM′

H /ΠM
H . Case 2 follows from (22). If y is in case 3, the

same continuity argument as above, together with (19) and (22), gives y∗.

Next, we prove (9).

Let y ≥ 0. There are three possible cases. 1. u∗ < min{uL(y), uM
H (y)}, 2. u∗ = uM

H (y) ≤ uL(y) and

3. u∗ = uL(y) < uM
H (y).

In case 1, we have

y =
v′(uL(y))

EL − v(uL(y))
=

v′(uM
H (y) + c)

EH − v(uM
H (y) + c)

=
v′(d)

EH − v(d)
(23)

for some unique d. Since v′(u)/(EL − v(u)) > v′(u)/(EH − v(u)), uL(y) < d. Since v′′ > 0, (23)

implies

ΠL(uL(y)) =
v′(uL(y))

y
<

v′(d)
y

= ΠM
H (uM

H (y)).

In case 2, we have

ΠL(uL(y)) ≤ ΠL(u∗) < ΠM
H (u∗) = ΠM

H (uM
H (y)).

where the second inequality is from Assumption 1.

In case 3, we can increase y until we are in Case 1, where ΠL < ΠM
H . In this process, ΠL(uL(y)) =

ΠL(u∗) and ΠM
H (uM

H (y)) is decreasing. Hence ΠL(uL(y)) < ΠM
H (uM

H (y)). �

Lemma 3.2 follows from the following result.

Proposition A.1. Let Πa(·),Πb(·) be two twice-differentiable concave decreasing functions such
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that Πa(u) > Πb(u) for u < ũ and Πa(u) < Πb(u) for u > ũ, where Πa(ũ) > 0 and ũ > u∗. Let

Va(y) = 0.5Πa(ua(y))

Vb
a (y) = max

u∈[u∗,Π−1
b (0)]

p(u, ua(y); y)Πb(u)

Vb(y) = 0.5Πb(ub(y))

Va
b (y) = max

u∈[u∗,Π−1
a (0)]

p(u, ub(y); y)Πa(u)

where ua(y), ub(y) solve (5) when Π = Πa,Πb respectively. Then Va(y) crosses Vb
a (y) exactly once,

from above, at some ya, Vb(y) crosses Va
b (y) exactly once, from below, at some yb. Finally, yb < ya.

Proof. For y such that ua(y) = u∗, Va(y) > Vb
a (y). For y such that ua(y) > ũ, Va(y) < 0.5Πb(ua(y)) <

Vb
a (y). Hence Va crosses Vb

a from above at some ya where ya > −Π′a(u)/Πa(u).

To show that they cross exactly once, it suffices to show that V ′a(y) < Vb′
a (y) whenever Va(y) =

Vb
a (y). Let ya be a crossing point. Let ua = ua(ya) and ub

a be such that Vb
a (ya) = p(ub

a, ua; ya)Πb(ub
a).

Then it must be

ua ≤ ũ ≤ ub
a. (24)

and at least one is a strict inequality.8 By the envelope theorem,

V ′a(ya) = (p2(ua, ua; ya)u′a(ya) + p3(ua, ua; ya))Πa(ua)

Vb′
a (ya) = (p2(ub

a, ua; ya)u′a(ya) + p3(ub
a, ua; ya))Πb(ub

a)

Using p(ua, ua; ya)Πa(ua) = p(ub
a, ua; ya)Πb(ub

a), we have

V ′a(ya) < Vb′
a (ya)

⇔
p2(ua, ua; ya)
p(ua, ua; ya)

u′a(ya) +
p3(ua, ua; ya)
p(ua, ua; ya)

<
p2(ub

a, ua; ya)
p(ub

a, ua; ya)
u′a(ya) +

p3(ub
a, ua; ya)

p(ub
a, ua; ya)

which follows from Assumption 3.9 An identical argument shows that Vb crosses Va
b , exactly once,

from below, at some yb. Moreover, at yb, ua
b(yb) ≤ ũ ≤ ub(yb) with at least one strict inequality.

Next, we show yb < ya. Since Vb crosses Va
b at yb from below, it suffices to show Va

b (ya) < Vb(ya).

To see this, let

Wa(u2) = max
u

p(u, u2, ya)Πa(u)

Wb(u2) = max
u

p(u, u2, ya)Πb(u).
(25)

8 If both are equalities, FOC implies ya =
−Π′a(ũ)
Πa(ũ) =

−Π′b(ũ)
Πb(ũ) . Since Πa(ũ) = Πb(ũ), this contradicts Π′a(ũ) < Π′b(ũ).

9Assumption 3 implies p2 < 0, p2/p is increasing in u1, p3(ua, ua; ya) = 0 and p3 > 0 when u1 > u2.
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Then Wa(·),Wb(·) are decreasing and

Wa(ua(ya)) = Va(ya) = Vb
a (ya) = Wb(ua(ya)) (26)

Wa(ub(ya)) = Va
b (ya), Wb(ub(ya)) = Vb(ya). (27)

We now prove two claims:

Claim 1 ua(ya) < ub(ya)

Claim 2 Wa(u) = Wb(u)⇒ W ′
a(u) < W ′

b(u).

Va
b (ya) < Vb(ya) will follows from the two claims because of (26) and (27).

Proof of Claim 1: Claim 1 follows from that −Π′b(u)/Πb(u) is increasing and that

−Π′b(ub(ya))
Π′b(ub(ya))

= ya >
−Π′b(ua(ya))
Πb(ua(ya))

,

where the equality is (5) and the inequality follows from decreasing ub
a to ua(ya) (recall (24)) from

both sides of the FOC of ub
a:

p1(ub
a, ua(ya); ya)

p(ub
a, ua(ya); ya)

=
−Π′b(ub

a)
Πb(ub

a)
.10

Proof of Claim 2: Let ua solve Wa(u) and ub solve Wb(u). Assume Wa(u) = Wb(u). Then

Wa(u) = p(ua, u; ya)Πa(ua) = p(ub, u; ya)Πb(ub) = Wb(u) (28)

Moreover, (24) holds: ua < ub. The envelope theorem implies W ′
a(u) = p2(ua, u; ya)Πa(ua) and

W ′
b(u) = p2(ub, u; ya)Πb(ub). Substituting in (28) and rearranging, we have

W ′
a(u) < W ′

b(u)

⇔
p2(ua, u; ya)
p(ua, u; ya)

<
p2(ub, u; ya)
p(ub, u; ya)

which follows from Assumption 3 and ua < ub. �

Proposition A.2. The competing-principals game does not have an asymmetric equilibrium.

Proof. We prove two claims, from which non-existence follows.

Claim 1: There is no asymmetric equilibria (w1
H,w

1
L, a1), (w2

H,w
2
L, a2) in which a1 = a2.

Claim 2: There is no asymmetric equilibria (w1
H,w

1
L, a1), (w2

H,w
2
L, a2) in which a1 = H and a2 = L.

10Assumption 3 implies p1/p is decreasing in u1. So when one decreases ub
a to ua(ya), the LHS (left hand side)

increases to ya while the RHS decreases to −Π′b(ua(ya))/Πb(ua(ya)).
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Proof of Claim 1: Suppose there is such an equilibrium for some y. Let a1 = a2 = a and u1, u2

be the indirect utilities with u1 < u2. Let Πa(u) be the relevant profit function (ΠL,Π
M
H ,Π

N
H). Then

(5) implies

p1(u1, u2; y)
p(u1, u2; y)

≤ −
Π′a(u1)
Πa(u1)

, u1 ≥ u∗, c.s.

p1(u2, u1; y)
p(u2, u1; y)

= −
Π′a(u2)
Πa(u2)

(29)

Assumption 3 implies that
p1(u1, u2; y)
p(u1, u2; y)

>
p1(u2, u1; y)
p(u2, u1; y)

,

together with (29) we have

−
Π′a(u2)
Πa(u2)

< −
Π′a(u1)
Πa(u1)

,

contradicting that −Π′a(u)/Πa(u) is increasing.

Proof of Claim 2: Suppose there is such an equilibrium for some y. Then ΠL has to cross ΠN
H

or ΠM
H depending on whether there is monitoring. We prove the former case; the latter is identical.

Let u1, u2 be the equilibrium indirect utilities. Then

u1 ≤ ũN ≤ u2

and one of the inequalities are strict.11 This implies that u1 < u2. Under an equilibrium, principal 1

does not want to deviate to implement a = L given that principal 2 offers u2, and principal 2 does

not want to deviate to implement a = H either. Hence

WH(u2) ≥ WL(u2)

WL(u1) ≥ WH(u1)
(30)

where WH,WL are defined as in (25) with Πa = ΠN
H and Πb = ΠL. However, since u1 < u2,

(30) implies that WH crosses WL from below at some u ∈ [u1, u2]. This contradicts Claim 2 of

Proposition A.1. �
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