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Abstract

In Instrumental Variables (IV) estimation, the effect of an instrument on an endogenous

variable may vary across the sample. In this case, IV produces a local average treatment

effect (LATE), and if monotonicity does not hold, then no effect of interest is identified.

In this paper, I calculate the weighted average of treatment effects that is identified under

general first-stage effect heterogeneity, which is generally not the average treatment effect

among those affected by the instrument. I then describe a simple set of data-driven ap-

proaches to modeling variation in the effect of the instrument. These approaches identify a

Super-Local Average Treatment Effect (SLATE) that weights treatment effects by the cor-

responding instrument effect more heavily than LATE. Even when first-stage heterogeneity

is poorly modeled, these approaches considerably reduce the impact of small-sample bias

compared to standard IV and unbiased weak-instrument IV methods, and can also make

results more robust to violations of monotonicity. In application to a published study with a

strong instrument, the preferred approach reduces error by about 20% in small (N ≈ 1, 000)

subsamples, and by about 15% in larger (N ≈ 33, 000) subsamples.
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I. INTRODUCTION

In order for instrumental variables (IV) estimation to identify a causal effect of interest,

there are both theoretical (validity) and statistical (relevance) conditions that must hold. In

applied settings, theoretical concerns about validity tend to be central. However, recent sur-

veys of IV usage find that statistical considerations should receive more attention. Published

IV studies often suffer from inadequate power (Young, 2018) and heightened sensitivity to

heteroskedasticity and clustering (Andrews et al., 2019). This occurs even though the prob-

lem of weak instruments and other forms of statistical sensitivity has been long diagnosed

(Nelson and Startz, 1990; Staiger and Stock, 1997) and researchers have tools for testing for

weakness or addressing it.

This paper provides a set of simple IV estimators that improve the statistical performance

of IV by focusing on the “first stage” of estimation - the effects of instruments on their

endogenous variables. Instruments may have larger or smaller effects on different individuals.

I model this heterogeneity directly and examine how it relates to the identification of causal

effects, and to the statistical performance of IV.

Heterogeneity in the effect of the endogenous variables in an IV setting is very well-studied

(e.g. Kasy, 2014; Heckman et al., 2006) but heterogeneity in the effect of the instruments

less so. First-stage heterogeneity is commonly understood in the framework proposed in

the mid-1990s by, e.g., Angrist et al. (1996). Under this framework, the population consists

of “compliers” for whom the instrument has a nonzero effect, “never-takers” and “always-

takers” who are unaffected by the instrument, and “defiers” for whom the instrument has a

nonzero effect of an opposite sign to the compliers. This framework highlights the need for a

monotonicity assumption, under which the “defiers” must be assumed not to exist in order

to estimate a casual effect of interest. Under monotonicity, IV estimates a local average

treatment effect (LATE).1

1Considerable work has been done in using instrumental variables to estimate other forms of treatment
effects such as the marginal treatment effect, and in critiquing LATE for having weak economic interpretation
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I present a model of effect heterogeneity in the first and second stages to show what

is identified under unrestrained heterogeneity in otherwise standard settings. With one

endogenous variable and one instrument, IV identifies a weighted average of all individual

treatment effects, where the weights are the linear effect of the instrument on the endogenous

variable. This does not match the common presentation of the IV-identified LATE as the

average treatment effect (ATE) among compliers, which additionally must assume that the

effect of the instrument is constant among compliers.2

The main contribution of this paper is not in its theoretical econometric model of general

first-stage heterogeneity, but rather in focusing on the implications of that heterogeneity for

the small-sample bias of the estimator, and how researchers can take advantage of it. The

presence of observations for which the instrument has little to no effect (“never-takers” and

“always-takers”) weakens the instrument and increases small-sample bias without changing

the IV estimate in expectation. This intuition about never-takers and always-takers extends

to observations for which the instrument has a nonzero but small effect. Bias can be reduced

by limiting the influence of these observations on estimation. Researchers already do this

by, for example, selecting samples in which the instruments are likely to have an effect.

I derive the single-equation properties of two extremely simple estimators that directly

model heterogeneity in the first stage in estimation. These estimators simply perform stan-

dard IV, except that the effect of the instrument is allowed to vary over groups, or is esti-

mated at an individual level and then used as part of a sample weight.3 As such, these new

methods should be intuitive to users of regular IV, and can be implemented in any setting

(see, e.g., Heckman and Vytlacil, 2007). However, I will focus on the LATE understanding as it is common
in much applied work, and relates readily to the estimand in this paper.

2The finding that the IV-identified LATE is generally not the average treatment effect among compliers is
not novel, and in fact can be inferred from Imbens and Angrist (1994). However, the simplified interpretation
seems to have become common quickly, and can be found for example in Angrist and Imbens (1995). The
ATE-among-compliers understanding appears to be common among applied researchers, and is often used in
demonstrations of IV for student and researcher audiences (e.g. Imbens and Wooldridge, 2009; Wooldridge,
2010).

3To avoid introducing too many new terms in the paper, I refer to these estimators in the text as “SLATE
estimators.” However, I suggest “Magnified IV” as a general term, since these estimators magnify the impact
of observations that respond strongly to the instrument.
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where linear IV is performed. These methods (1) identify a Super-Local Average Treatment

Effect (SLATE), which is a weighted average of individual treatment effects, where weights

are more strongly related to the impact of the instrument than in the LATE, (2) generally

reduce noise in the IV bias term, (3) weaken the reliance on the monotonicity assumption

in the group-interaction version of the estimator, and (4) give the researcher control over a

tradeoff between bias and “localness” in the weighted version of the estimator. The weighted

estimator also allows the ATE among compliers to be estimated, although this relies on large

samples and very accurate estimates of individual first-stage treatment effects.

While the ATE is generally considered the preferred estimate, it is not clear that the

SLATE estimated in this paper is of less policy relevance than the LATE, and so a more

precisely-estimated SLATE may be preferable to a more-biased LATE. However, if re-

searchers do prefer the LATE to the SLATE, they should be aware that including an inter-

action term between the instrument and a group identifier, which is a relatively common

practice,4 produces a SLATE rather than a LATE.

I explore the properties of the SLATE estimators relative to two stage least squares

under different conditions including invalidity, heteroskedasticity, and violation of mono-

tonicity, finding that the group-interaction version of the SLATE estimator performs well in

the simulation settings explored, and also performs comparably to other weak-instrument

methods despite being much simpler. The weighted SLATE estimator is not as successful.

The SLATE estimators rely on the ability to estimate variation in the first-stage treat-

ment effect, and so are a complement to recent machine learning developments in estimating

the heterogeneity of treatment effects. I estimate first-stage heterogeneity in three ways.

The first two rely on no additional information or covariates. These are a naive repeated

random selection (“GroupSearch”), and the Top-K τ -Path algorithm (TKTP) (Sampath and

Verducci, 2013; Sampath et al., 2015, 2016; Bamattre et al., 2017). TKTP is intended to

4I will refrain from pointing fingers, but a literature search for “interact the instrument” produces several
examples.
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detect the sign of the relationship between the endogenous variable and instrument without

the need to model that relationship with additional mediators. Neither GroupSearch nor

TKTP are capable of precisely uncovering first-stage heterogeneity, but the SLATE estima-

tors perform well regardless. The third approach is the causal forest (Athey and Imbens,

2016; Wager, 2018; Athey et al., 2019), which more precisely estimates heterogeneity in the

treatment effect at the individual level by repeatedly partitioning the data using a set of

high-dimensional controls.

The use of modern techniques in modeling effect heterogeneity has the capacity to con-

siderably improve estimates when combined with the SLATE estimators. I apply the new

estimators in a real-world setting by replicating Angrist, Battistin, and Vuri (2017) and

testing the ability to reproduce the full-sample estimate using small subsamples. In those

subsamples, combining my estimators with causal forest reduces mean absolute error by

more than 20% in small (N ≈ 1, 000) subsamples, and by about 15% in larger (N ≈ 33, 000)

subsamples.

II. INSTRUMENTAL VARIABLES WITH

HETEROGENEOUS EFFECTS

II.i. ONE ENDOGENOUS VARIABLE AND ONE EXCLUDED

INSTRUMENT

In this section I demonstrate how heterogeneity in the effect of the instrument on treatment

impacts the instrumental variables (IV) estimator in a simplified setting. I use a simplified

one-endogenous-variable and one-excluded-instrument setting rather than providing a gen-

eral proof because the main purpose of the derivation of the weights is illustrative and so as

to drive discussion of bias. A more general derivation is not novel, and dates back at least

to Imbens and Angrist (1994).
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Consider a basic instrumental variables specification with one mean-zero endogenous

variable x and one mean-zero exogenous variable z. Controls are not included, or they have

been partialed out.

yi = xiβi + εi (1)

xi = ziγi + νi (2)

There is full heterogeneity in the effects of zi on xi (γi) and of xi on zi (βi). Assume

E(z′ε) = E(z′ν) = E(z′γ) = E(z′β) = E(x′γ) = E(x′β) = 0 and E(x′ε) = E(ν ′ε) 6= 0,

where a lack of an i subscript indicates a vector. The treatment effect varies with the effect

of the instrument, so E(γβ) 6= E(γ)E(β).

A standard IV estimator is calculated as:

β̂IV =
NĈov(z, y)

NĈov(z, x)
(3)

where N is the sample size.

NĈov(z, y) =
∑
i

ziyi =
∑
i

zi(xiβi + εi) =
∑
i

(zixiβi + ziεi)

=
∑
i

(zi(ziγi + νi)βi + ziεi) =
∑
i

(z2i γiβi + ziνiβi + ziεi) (4)

NĈov(z, x) =
∑
i

zixi =
∑
i

(z2i γi + ziνi) (5)

In expectation, since E(z′ε) = E(z′ν) = Cov(z, γ) = Cov(z, β) = 0, this becomes

E(β̂IV ) =
E(γ′β)

E(γ)
(6)

The expected value of the IV estimator is a weighted average of the βis, where the weights

are γi. This does not match the common interpretation among applied researchers that the
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LATE is the ATE among compliers. The common interpretation only holds if γi is limited

to only two values - 0 or some constant c.

Given the weights, I turn to the small-sample bias of the IV estimator. There are two

bias terms, both of which are zero in expectation but are present in finite samples:

∑
i ziνiβi∑
i zixi

+

∑
i ziεi∑
i zixi

(7)

The second of these is well known from any IV derivation. The first is present because

of the assumption that E(γβ) 6= E(γ)E(β), and so E(x′β) 6= E(x)E(β), preventing a term

from canceling out as normal.

This basic derivation isolates several points about IV, most of which are well-known:

1. If γi takes both positive and negative signs (monotonicity does not hold), standard IV

generally does not estimate a parameter of interest.

2. If γi takes a range of values, the IV estimand is a weighted average of treatment effects

where the weights are γi.

3. In finite samples, IV is biased.

4. The size of the IV bias is based on
∑

i ziνiβi and
∑

i ziεi, and is smaller the stronger

the relationship is between zi and xi.

In addition, this makes clear that observations with γi close to 0 do not have an effect

on the expected value of the IV estimand. However, in a finite sample, the IV bias term

has
∑

i zixi =
∑

i(z
2
i γi + ziνi) in the denominator. The addition of a single observation

N + 1 to the sample where γN+1 = 0 will not change the expected estimate at all, but will

increase the numerator of the bias by zN+1νN+1βN+1 + zN+1εN+1 and the denominator by

zN+1νN+1. Unless βN+1 = 0 and V ar(ε) ≥ V ar(ν) (or some relaxed combination of the two),

this introduces more noise into the numerator than the denominator, increasing the extent

to which variation in the estimate is driven by bias rather than sampling variation.
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So, despite not affecting the identified parameter of interest or the expected value of the

IV estimator, these observations do introduce additional noise to the estimator, make the

instrument weaker, and worsen the small-sample properties of the IV estimator.

One potential means of improving the small-sample properties of the IV estimator, then,

is to find and remove or downweight observations with small values of γi, which should

increase the absolute value of Cov(zi, xi) and reduce bias.

II.ii. MODELING VARIATION IN THE EFFECT OF THE IN-

STRUMENT

I now consider an extension of the model in the previous section in which γi varies over

known groups gi ∈ {1, ..., G}, and the coefficient on the instrument is allowed to vary over

those groups. Controls and group fixed effects have been partialed out in both the first and

second stages. The true model is the same as in the previous section, but the estimation

model becomes:

yi = xiβi + εi (8)

xi = zi
∑
g

γgIgi + νi (9)

where Igi is an indicator function equal to 1 if gi = g. Estimating this model by 2SLS,

the fitted values in the first stage are equivalent to what would arise by estimating the first

stage G separate times, once for each group.

x̂i = zi
∑
g

γ̂gIgi = zi
∑
g

Cov(xi, zi|Igi)
V ar(zi|Igi))

Igi (10)

where γ̂g is the first-stage coefficient estimated for group g, and γg is the true mean γi

among those in group g. The 2SLS estimator is
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β̂2SLS =
N(Ĉov(x̂, y))

N(V̂ ar(x̂))
(11)

The numerator and denominator can be expanded as

N(Ĉov(x̂, y)) =
∑
i

x̂iyi =
∑
i

ziyi
∑
g

γ̂gIgi

=
∑
i

(z2i γiβi + ziνiβi + ziεi)
∑
g

γ̂gIgi

=
∑
g

γ̂g

(∑
i

(z2i γiβi + ziνiβi + ziεi)Igi

)
(12)

N(V̂ ar(x̂)) =
∑
i

x̂2i =
∑
i

(
zi
∑
g

γ̂gIgi

)2

=
∑
g

γ̂2g

(∑
i

z2i Igi

)
(13)

In expectation, E(γ̂g) = 1
Ng

∑
i γiIgi ≡ γg and E(ziνi) = E(ziεi) = 0. As a result, 2SLS

identifies

E(β̂2SLS) =
E(
∑

i βiγi
∑

g γgIgi)

E(
∑

g γ
2
gNg)

(14)

where Ng =
∑

i Igi is the number of individuals in group g. This is a weighted average

of the βis, where the weights are γgγi for the associated γg. This narrows the monotonicity

assumption to instead be monotonicity-within-group, i.e. that γg and γi always have the

same sign ∀ gi = g so weights are positive. As V ar(γg) approaches zero among groups with

non-zero γg, as might occur if there were no differences between groups, or if the treatment

effect were either zero or a constant c (as in the basic defiers-compliers framework), the closer

one of the γg terms comes to canceling out, returning to the γi LATE weights of the previous

section.

If γi is constant within group, this simplifies to
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E(β̂2SLS) =
E(
∑

i βi
∑

g γ
2
gIgi)

E(
∑

g γ
2
gNg)

(15)

where the weights are the associated γ2g for each individual, weighting the estimate more

heavily on observations with high absolute γi values than in a LATE. I refer to this class of

estimates as being Super-Local Average Treatment Effects (SLATE).

In a finite sample, the bias term is

∑
g γ̂g (

∑
i zi(νiβi + εi)Igi)∑

g γ̂
2
g (
∑

i z
2
i Igi)

(16)

Compared to the bias term in the previous section, each term in the summation is mul-

tiplied by an additional γ̂g in the numerator and the denominator. I rewrite the bias by

pulling out what each term in the summation would be if γ̂ were not allowed to vary over

group:

∑
g(γ̂g − γ̂) (

∑
i zi(νiβi + εi)Igi) + γ̂

∑
i zi(νiβi + εi)∑

g(γ̂
2
g − γ̂2) (

∑
i z

2
i Igi) + γ̂2

∑
i z

2
i

(17)

Consider the variance of this bias under i.i.d.:

∑
g E
(
γ̂2g (
∑

i z
2
i (νiβi + εi)

2Igi)
)∑

g E
(
γ̂4g (
∑

i z
4
i Igi)

) (18)

By the BLUE properties of OLS, estimating the first stage separately by group will

necessarily increase V̂ ar(x̂).5 So, taking γ̂g = γg and assuming that the (νiβi + εi)
2 term is

separable, the variation in the bias term will be lower than it would be if a uniform γ̂ had

been enforced, and the degree of reduction will be related to how different the γg terms are.

In a given finite sample, these final two assumptions may not hold. Further, the reduction

in bias is less likely the more noise there is in γ̂g (i.e. the smaller the groups are). There is

5Recall that between-group differences have already been partialled out from both x and z, so Simpson’s
paradox does not apply here.
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also always the possibility that in a given finite sample, γ̂g may be related to z2i (νiβi + εi)
2,

increasing bias relative to regular IV.

Compared to the previous section, allowing the effect of the instrument to vary over

groups serves two purposes: it generally reduces bias, and also it increases the weight of

the estimator on the βis associated with high γi values. In other words, it increases the

“localness” of the estimate. This implies, in instrumental variables, a tradeoff between bias

and localness.

II.iii. WEIGHTED IV UNDER FULL INFORMATION

Here I consider a modification of the IV estimation from the earlier section in which weights

are included. Consider a diagonal matrix of weights W . The weighted IV estimate βWIV is

β̂WIV =
NĈov(Wz,Wy)

NĈov(Wz,Wx)
(19)

Where W is a diagonal matrix with w = {w1, w2, ...} on the diagonal. Assume that

weights are chosen such that Cov(w, z) = 0.

Following the same derivations as in the previous section,

E(β̂WIV ) =
E((WWγ)′β)

E(WWγ)
(20)

In other words, weighted IV estimates a weighted average of the βis, where the weights

are w2
i γi. In finite samples, the bias terms are

∑
iw

2
i ziνiβi∑

iw
2
i zixi

+

∑
iw

2
i ziεi∑

iw
2
i zixi

(21)

Assume also that γ is known. If weights are chosen such that Cov(w, z) = 0 but

Cov(w, γ) > 0, this will identify a SLATE and reduce variation in the bias term.

There are many such weights that could fulfill the role of being independent of z but

related to γ. However, there are three weighting functions that may be of particular interest.
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The first is an indicator function wi = I(γ 6= 0). This effectively drops all observations

with γi = 0 from the sample, which will strengthen the instrument and reduce variance in the

bias term. This will also not change the expected value of the estimand, since observations

with γi = 0 already receive a weight of 0 on their βi. Many researchers already follow this

weighting scheme by including data only from regions, periods, etc., where the instrument

would be likely to have an effect. This can be extended such that wi = 0 when γi indicates

a defier, which restores the LATE interpretation of the estimator.

The second is wi = (Fγi)
p for some p 6= 0,6 where Fγ = (N − k)V ar(x̂|γi)/V ar(x − x̂)

is a first-stage F -statistic modified such that the numerator uses the variance of predicted

values generated as though γ = γi for the whole sample. In the single-instrument setting this

is equivalent to setting wi = |γi|4p This weighting scheme has the benefit of working even

if γ is often small but nonzero, and being easily applied in a multiple-instrument setting.

Further, it gives the researcher some control over the amount of bias: an increase in p

will usually reduce bias (proof to follow), but will make the estimate more heavily weight

observations with large γi values, increasing the “localness” of the estimate. In effect, there

is a bias-localness trade-off, and the researcher has some control over that trade-off.

Setting p = 1/4 is a natural choice. With p = 1/4, the identified estimate has |γi|γi

weights, which is conceptually similar to the γgγi weights achieved by allowing the effect of

the instrument to vary over groups. If γi is constant within group and monotonicity holds,

the two weights are identical.

Another natural choice for p is p = −1/4 (and wi = 0 ∀ γi = 0), even though it worsens

small-sample bias. When p = −1/4, if the sign of γi is constant (no defiers), then in the

single-instrument setting the proposed estimator identifies a weighted average of the βis with

weights wi = |γi|−1γi = 1 ∀ γi 6= 0, wi = 0 ∀ γi = 0. In other words, p = −1/4 identifies the

ATE among compliers, matching the standard colloquial interpretation of the LATE.

Given these possible weighting schemes, it is important to determine the impact of p on

6If p < 0, weighting should set wi = 0 if Fγi = 0 to avoid dividing by 0.
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IV bias. With wi = (Fγi)
p weighting, the bias in a single-instrument setting is:

bias =

(∑
i(fγ

2
i )
pzi(νiβi + εi)∑

i(fγ
2
i )
pzixi

)
≡ ζ (22)

where f = (N − k)V ar(z)/V ar(Mzx) and Mz is the z elimination matrix.

∂ζ

∂p
=

∑
i|γi 6=0 log(fγ2i )(fγ

2
i )
pzi(νiβi + εi)∑

i(fγ
2
i )
pzixi

− ζ
∑

i|γi 6=0 log(fγ2i )(fγ
2
i )
pzixi∑

i(fγ
2
i )
pzixi

(23)

Assume that |fγ2i | is either equal to 0 or above 1 for all i (or use a related weighting

scheme where wi = 0 ∀ |fγ2i | < 1 but otherwise wi = |fγ2i |).

In a finite sample, increasing p is not guaranteed to reduce bias, but a reduction will be

more likely the larger the bias is. As long as the γi values are generally of the same sign,∑
i|γi 6=0 log(fγ

2
i )(fγ

2
i )
pzixi∑

i(fγ
2
i )
pzixi

will on average be positive and above 1.7 If Equation 23 is dominated

by the second term, then it will have the opposite sign of ζ and so increases in p will shrink

the bias towards 0.

Does the second term dominate Equation 23? The second term takes the bias, reverses

its sign, and, on average, scales it up, which means that it will be greater in absolute value

than ζ alone. The first term takes the bias and multiplies each summative element of the

bias by log(fγ2i ). Because γi is unrelated to zi, νi, and εi, it is ambiguous whether this will

be greater or lesser than ζ. So while it is not guaranteed, in general, the second term should

dominate and p will reduce bias. However, as ζ shrinks, variation in the second term drops

relative to variation in the first term, so the first term should dominate more often than it

does at small sample sizes. Since ζ decreases with sample size, the chance that increases in

p worsen bias increases for larger sample sizes.8 Conversely, as the sample size grows, the

7Variation in sign of the γi values can reduce the term below 1 and can even make it negative. For
example, consider if the largest zixi terms in absolute value are of the opposite sign (WLOG, negative) of
most of the zixi terms (positive). The large number of positive zixi terms makes E((fγ2i )pzixi) positive, but
the additional weight given the large negative terms by log(fγ2i ) may make E(log(fγ2i )(fγ2i )pzixi) negative.

8Alternately, consider the variance of the bias, ζ2. Under i.i.d., all cross-product terms drop out, and
the structure of ∂ζ2/∂p is very similar to Equation 23; when the variance of bias is large, the second term
dominates and p reduces variance in bias. When variance of bias is small, noise in the first term dominates.
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chance that a reduction in p might reduce bias increases.

These results are dependent upon using known values of γi, as well. The performance

of the weighting estimator when γi is poorly estimated is not as certain. I provide no proof

here on the relationship between the precision of γ̂ and the small-sample bias properties of

the weighted SLATE estimator.

In sum, the weighted version of the SLATE estimator, relative to the version using a

first-stage group interaction, is less certain to reduce variation in the bias term, and more

dependent on identifying γ̂ precisely. On the other hand, it offers an amount of control over

the bias-localness tradeoff that the group version does not. The following simulation will

provide one context in which to test whether the special conditions under which the weighted

estimator improves performance hold.

III. FEASIBLE ESTIMATORS FOR SIMULATION

The previous sections present estimators that rely either on knowledge of γi, or a set of

groups over which γg varies. In real data, this information is generally not available.

There are many well-known methods for modeling variation in an effect using observed

variables. If the effect of zi on xi is expected to vary over a set of covariates vi, then an

interaction between zi and vi can be included in the model, or γi can be allowed to vary

over vi in a multilevel model (Raudenbush and Bryk, 2002), or a number of other methods,

including recent developments in machine learning for modeling heterogenous treatment

effects like causal forest (Athey and Imbens, 2016; Wager, 2018; Athey et al., 2019). Any such

approach would allow the group-based method in Section II.ii to be performed. Alternately,

any method that models γi directly can be used to follow the weighting method in Section

II.iii, or to combine it with the group-based method. Since the SLATE estimators can include

controls for vi in both stages, these approaches do not require a validity assumption for vi.

This section, and the following simulation, will focus instead on two methods for estimat-
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ing first-stage heterogeneity that do not require any additional information about variation

in γi, instead trying to identify groups g over which γi varies from the data itself. I do this so

that, in the following simulation sections, I will not confuse a test of the effectiveness of the

estimators with success in selecting first-stage mediators. In fact, both methods only do a

mediocre job at uncovering the underlying true first-stage heterogeneity, as will be discussed

in Section IV.iii. Despite this, the SLATE estimators still perform well.

However, as demonstrated in Sections II.ii and II.iii, improved performance relies on the

ability to select groups over which γi actually varies, or to estimate γi accurately so that

the weights wi can have a positive relationship with γi. So, approaches that use all available

information such as covariates are likely to improve performance further. I will use causal

forest to model first-stage heterogeneity using controls in Section VI. The simulation results

should be understood as the ability of the estimators to improve performance even without

the benefit of additional information about heterogeneity.

The first method, GroupSearch, selects a number of groups and a number of iterations.

In each iteration, it assigns groups at random and estimates the first stage. Then, it selects

the set of groups in which the first-stage F-statistic is highest.

GroupSearch, with enough iterations, should be able to identify groups within the data

for which there is between-group variation in γ̂g. In simulation, I attempt 100 different

randomly-selected groupings for each sample.

There is the potential concern that GroupSearch will introduce bias either via overfitting

or by inducing some correlation with ν and invalidating the instrument. However, these are

unlikely to be major issues.

The overfitting concern is valid, but only for the first stage: the estimate of the rela-

tionship between x and z will be overfitted. But for the purposes of IV, we simply wish to

extract all variation in x statistically explained by z, not theoretically explained by z; there

is no particular reason that this statistical explanation needs to generalize past the present

sample (see, e.g., Belloni et al. 2014). Overfitting is acceptable.
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The concern that GroupSearch might invalidate the instrument would require that z be

invalid in the first place. At least in the Section II.ii methods, the grouping structure is to

be partialed out or controlled for, and so any relationship between the grouping structure

itself and ν is accounted for by the method. For GroupSearch to invalidate the instrument,

it would need to be the case that zi
∑

g γiIgi is related to ν while zi is not.

It is possible that if zi is invalid for some subgroup, and |γg| is large for that subgroup,

then GroupSearch could worsen the effects of invalidity by weighting that subgroup more

heavily. But this requires that zi already be invalid. As long as zi is truly valid, this should

not be possible.

The second method is the Top-K τ -Path search, or TKTP (Sampath and Verducci, 2013;

Sampath et al., 2015, 2016; Bamattre et al., 2017). Given two variables (x and z in our case,

after partialing out), TKTP is an algorithm designed to find a subgroup of the data in which

there is a positive relationship between x and z.

TKTP uses the concordance of the ranks between the two variables. For any two obser-

vations, xi, zi, xj, and zj, that pair is concordant if xi > xj and zi > zj, or if xi < xj and

zi < zj, and discordant otherwise. Kendall’s τ is the proportion of pairs that are concor-

dant. A higher τ indicates a stronger positive relationship between x and z. TKTP creates

a τ -path by arranging the observations in order such that, if τ(i) is τ calculated using the

first i observations in that order, τ is decreasing. In other words, it sorts the observations

by their contribution to a positive association. Given ties, the ordering may be non-unique.

Using the τ -path order, the algorithm generates the null distribution of the τ -path under

no association, and identifies a stopping parameter j where the τ -path differs from the null

distribution, such that the observations {1, 2, ..., j} in the τ -path are considered to have a

positive relationship, and {j + 1, ..., n} are not.

In the simulation, TKTP is run twice, once on x and z to separate out a group with

positive association, and once on x and−z to separate out a group with negative association.9

9Because there is some randomness injected in the algorithm, it is possible that the same observation
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Theoretically, since it specifically tests for subgroups with positive and negative asso-

ciations separately, TKTP seems ideal in cases where there may be an unmeasured defier

subgroup. However, a downside of TKTP is that, under current implementations, it is

computationally slow, and may not be usable for very large data sets.

IV. SIMULATION

I test the properties of the proposed estimators under simulated-data settings, beginning

with a setting where all IV assumptions are satisfied, and then in subsections evaluating

alternate data generating processes (DGP), some of which contain the violation of standard

assumptions.

Data simulation centers around the data-generating process

yi = xiβi + 2wi + εi (24)

xi = ziγi + wi + νi (25)

zi, wi, εi, νi ∼ N(0, 1) (26)

where wi represents an unobserved confounding factor, and is not controlled for in analy-

sis. βi and γi are constructed to be related. I encode four groups of equal size into the data:

A, B, C, and D. For these groups, respectively, β = {1, 2, 3, 4} and γ = {0, .075, .15, .223}.

These exact numbers are chosen such that the expected OLS bias is 1, and the median

first-stage F-statistic is 10 at a simulated sample size of 1, 600. I generate 1, 000 simulated

samples with N = {100, 200, 400, 800, 1, 600, 3, 200, 6, 400, 12, 800, 25, 600} observations each.

In each sample I calculate 2SLS, as well as different versions of the SLATE estimators, by

constructing groups with GroupSearch (GS) and Top-K τ -Path (TKTP) for the group-based

version of the SLATE estimator. Then I use those groups to estimate γgs to use for weights

may end up in both groups, in which case it is assigned to neither.
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with p = 1/4 for the weighting and combined group/weight versions of the SLATE estimator.

I compare estimates to the true LATE and SLATE given the formulae in Sections II.i and

II.ii.

IV.i. BASIC SIMULATION

Here I present results following the DGP in Section IV. I present feasible results, taking as

known only the number of underlying groups for use with GroupSearch. I implement both

GroupSearch and TKTP for feasible estimation. TKTP is not implemented for sample sizes

above 1, 600 due to computational limitations.10

Figure 1 shows performance using feasible estimation. The GroupSearch-selected groups

improve upon 2SLS on average by about 50% at the N = 1, 600 point. Adding weights on top

of the group modeling does not change performance. Top-K τ -Path underperforms relative

to GroupSearch, even though it uses a more rigorous approach to identifying treatment effect

variation.

In general, the proposed group-based estimator considerably outperforms 2SLS at smaller

sample sizes, and is very similar to 2SLS at large sample sizes. The weighted versions do not

perform as well.

Bootstrap standard errors are higher than for OLS, as shown in Figure 2. But they are in

most forms better than Regular IV at small sample sizes, and similar at large sample sizes,

although the proposed estimators do not outperform 2SLS by as large a margin on standard

error as they do on deviation.

Performance is similar using γi ∼ U [0, 1/4.5], which is chosen to retain treatment effect

averages with the original DGP. In this and every other simulation using a continuous distri-

10The slow part of TKTP is the Backwards Conditional Search (BCS) part of their algorithm. In this paper
I use the FastBCS R implementation in Caloiaro (2019) from one of the original authors of Sampath et al.
(2015), and combine FastBCS with my own code for the rest of the algorithm. Other non-R implementations
are faster, so the use of TKTP with larger samples is feasible, especially if it only needs to be run once rather
than 1,000 times.
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Figure 1: Performance Using Feasible Estimation

Deviation is relative to parameter identified in expectation. At each sample size, 1,000 random samples are
drawn. GroupSearch (GS) estimates use a grouping of four groups from the best of 100 random groupings
generated. Top-K τ -Path (TKTP) uses TKTP to identify groups in which z and x have positive, negative,
or null relationships, respectively. TKTP is only run for smaller samples due to computational limitations.
For Weight variants, first stage coefficients are estimated using groups, and then those coefficients are used
to generate weights. See Section IV for data-generating process.
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Figure 2: Standard Error Using Feasible Estimation

At each sample size, 1,000 random samples are drawn. GroupSearch (GS) estimates use a grouping of four
groups from the best of 100 random groupings generated. Top-K τ -Path (TKTP) uses TKTP to identify
groups in which z and x have positive, negative, or null relationships, respectively. TKTP is only run for
smaller samples due to computational limitations. For Weight variants, first stage coefficients are estimated
using groups, and then those coefficients are used to generate weights. See Section IV for data-generating
process.
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bution for γi, γi is sorted such that the lowest quartile of γi values are in Group A, the next

quartile is in Group B, and so on, inducing a relationship between γi and βi. See Appendix

Appendix A Figure A.13.

The SLATE estimators offer improved performance compared to 2SLS under these ideal-

ized conditions. However, these conditions will not hold universally. In the following sections,

I create data that violate standard IV assumptions to check whether the SLATE estimators

may be especially vulnerable to these violations relative to 2SLS. I also compare SLATE to

other estimators with attractive small-sample properties.

IV.ii. INVALIDITY

IV relies on a validity assumption for consistency. It is possible that the nature of the

proposed estimators, which attempts to maximize the influence of the instruments, may

make the estimate more sensitive to validity violations, as described in Section III. To test

for standard minor violations of validity, I generate zi as

zi = .2wi + ζi; ζi ∼ N(0, 1) (27)

The results of this simulation can be seen in Figure 3. Under this violation, all IV variants

converge to a higher level of deviation than in previous sections, which is to be expected since

the estimator is inconsistent. But at each sample size, the proposed estimators continue to

outperform 2SLS. Under the violation of validity, there is less deviation for the proposed

estimators at small sample sizes at large sample sizes.11

In addition to standard violations of validity, the proposed estimators introduce the

possibility that γi will be related to the second-stage error term. If this occurs, then using

11Performance actually worsens in larger samples here for GroupSearch. This is because, in smaller
samples, it is likely that some of the small-sample variation between groups picked up by GroupSearch is
unrelated to the true underlying invalidity. As samples increase, GroupSearch picks up this invalid variation
more accurately.
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Figure 3: Performance With Validity Violation

Deviation is relative to parameter identified in expectation. At each sample size, 1,000 random samples are
drawn. GroupSearch (GS) estimates use a grouping of four groups from the best of 100 random groupings
generated. Top-K τ -Path (TKTP) uses TKTP to identify groups in which z and x have positive, negative,
or null relationships, respectively. TKTP is only run for smaller samples due to computational limitations.
For Weight variants, first stage coefficients are estimated using groups, and then those coefficients are used
to generate weights. See Section IV.ii for data-generating process.
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Figure 4: Performance with Validity Violation in γi

Deviation is relative to parameter identified in expectation. At each sample size, 1,000 random samples are
drawn. GroupSearch (GS) estimates use a grouping of four groups from the best of 100 random groupings
generated. Top-K τ -Path (TKTP) uses TKTP to identify groups in which z and x have positive, negative,
or null relationships, respectively. TKTP is only run for smaller samples due to computational limitations.
For Weight variants, first stage coefficients are estimated using groups, and then those coefficients are used
to generate weights. See Section IV.ii for data-generating process.

individualized γi values to predict xi will violate validity. To test this, I return zi to its usual

zi ∼ N(0, 1), and generate γi as

γi = φi + .05(wi −min(wi))/max(wi)) (28)

where φi ∼ U [0, 1/4.5]. The results of this simulation are in Figure 4. Under this

violation, the proposed estimators are still no worse than 2SLS, and are considerably better

for very small samples, but the proposed estimators and 2SLS reach similar levels of mean

absolute deviation at smaller sample sizes than in Figure 1, around 1,600 observations rather

than 6,400.
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IV.iii. MONOTONICITY

In cases where monotonicity is violated, the IV estimand is not of particular interest, as

it contains negative weights on some treatment effects. This is true for 2SLS, and is also

true for the proposed estimators unless the subsample of “defiers” can be identified for each

instrument and the effect of the instrument is allowed to be different for that group.

If the underlying group structure is known, then the group-based estimator is proven in

previous sections to identify the SLATE even under violations of between-group monotonic-

ity. But this does not ensure that the feasible estimators can identify the group structure. I

repeat the DGP from Section IV except that γi ∼ U [−1/9, 3/9]. I then perform GroupSearch

with four groups and also TKTP.

The ability of both methods to identify the defier groups is underwhelming. I perform a

chi-square test to look for a relationship between the TKTP-identified groups and the groups

with true negative or positive effects. The p-value from this test is around .05 at all sample

sizes evaluated. TKTP tended to overassign observations to the ”No relationship” group

- ”No relationship” was the modal group assigned by TKTP to true-negative observations

across all sample sizes. Excluding ”No relationship” so the only options are positive and

negative, the modal group assigned to true-negative observations was negative about 40% of

the time in small samples, increasing to 50% for the largest samples tested. In GroupSearch,

the modal group assigned for true-negative observations is the lowest-γ̂g group (out of four

groups) about 25% of the time in small samples, up to 30% of the time in the largest samples.

Across all samples, the highest-γ̂g group was the least likely to be the modal group assigned

to true-negatives, although this still did occur about 20% of the time.

However, even though many observations are misclassified, classification is a considerable

improvement over no classification, especially given that Regular IV performance is worse

here than in other simulations. Figure 5 shows the results of the simulation, in which the

proposed estimators perform better under violations of monotonicity than 2SLS does, and

the improvement is to a greater degree than in Figure 1. At the N = 1, 600 point, for
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Figure 5: Performance under Violation of Monotonicity

Deviation is relative to LATE or SLATE, as appropriate, with all-positive weights. At each sample size,
1,000 random samples are drawn. GroupSearch (GS) estimates use a grouping of four groups from the best
of 100 random groupings generated. Top-K τ -Path (TKTP) uses TKTP to identify groups in which z and
x have positive, negative, or null relationships, respectively. TKTP is only run for smaller samples due to
computational limitations. For Weight variants, first stage coefficients are estimated using groups, and then
those coefficients are used to generate weights. See Section IV.iii for data-generating process.

example, the GroupSearch approach reduced mean absolute deviation in Figure 1 by 30%

relative to Regular IV. In Figure 5 there is instead a 57% improvement. Still, given the

weakness of GroupSearch and TKTP in identifying defiers, in cases where non-monotonicity

is likely, heterogeneity should be modeled using covariates likely to actually locate defiers.

IV.iv. CLUSTERING

As demonstrated in Young (2018), 2SLS is particularly sensitive to the presence of clustering

and heteroskedasticity, and when i.i.d. is violated, estimates may be considerably more noisy.

So, following Young (2018), I randomly assign each observation to be one of ten clusters

(allowing variation of the A, B, C, D groups within cluster). Then I modify the DGP such

that
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Figure 6: Performance under Clustering

Deviation is relative to parameter identified in expectation. At each sample size, 1,000 random samples are
drawn. GroupSearch (GS) estimates use a grouping of four groups from the best of 100 random groupings
generated. Top-K τ -Path (TKTP) uses TKTP to identify groups in which z and x have positive, negative,
or null relationships, respectively. TKTP is only run for smaller samples due to computational limitations.
For Weight variants, first stage coefficients are estimated using groups, and then those coefficients are used
to generate weights. See Section IV.iv for data-generating process.

xi = ziγi + λc(ηc + wi + nui)
√

2 (29)

yi = xiβi + λc(ηc + 2wi + εi)/
√

2 (30)

where λc is a randomly selected zi value from cluster c, and ηc is a randomly selected εi

value from cluster c. λc and ηc are the same for all members of cluster c.

Figure 6 shows the results of the simulation. The proposed estimators still offer improved

performance over 2SLS in this version, although the degree of improvement is muted, with

the estimators converging to similar levels of performance at smaller sample sizes. The

proposed estimators may be, in relative terms, harmed more by clustering than 2SLS is.

However, the proposed estimators still outperform 2SLS in this clustered setting.

26



IV.v. OTHER WEAK-INSTRUMENT METHODS

The proposed estimators are not the only existing approach to reducing small-sample bias.

Previously existing alternatives include variations of Limited-Information Maximum Likeli-

hood (LIML), and the Jackknife Instrumental Variables Estimator (JIVE). I compare the

performance of the proposed estimators to JIVE and to the Fuller (1977) implementation of

LIML, using the DGP from Section IV.12 LIML is a k−class estimator known to be biased,

but Fuller (1977) suggests an adjustment parameter α for k which he suggests be set to

α = 1 for unbiasedness or α = 4 for minimum mean squared error. I run both, as “Fuller

(1)” and “Fuller (4)”.

Figure 7 compares all of these estimators. The performance of JIVE is fairly weak in

the given setting, not outperforming even 2SLS. The Fuller (1) implementation of LIML,

however, has similar performance to the proposed estimators, and outperforms the Top-K

τ -Path variant, but is modestly outperformed by the proposed estimator in terms of devia-

tion. Fuller (4) outperforms all SLATE estimators in mean absolute bias. However, it does

return a biased result (Fuller, 1977), implying a tradeoff between the two estimators. This

simulation does not consider many-instrument, many-controls, or heteroskedastic contexts

where LIML methods may perform more or less effectively - in particular, Fuller (4) assumes

homoskedasticity, although there are heteroskedasticity-robust variants such as Hausman

et al. (2012). There are, in general, many other small-sample robust estimators that could

be tried.

IV.vi. NUMBER OF GROUPS

The final two simulation subsections, instead of testing performance under violated assump-

tions or in comparison to other methods, checks the performance of the SLATE estimator

under different settings - first, testing the impact of the choice of the number of groups to

12Fuller and JIVE use the implementations in Jiang et al. (2017) and Ginestet (2016), respectively.
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Figure 7: Comparison of Proposed Estimators to Other Weak-Instrument Methods

Deviation is relative to parameter identified in expectation. At each sample size, 1,000 random samples are
drawn. GroupSearch (GS) estimates use a grouping of four groups from the best of 100 random groupings
generated. Top-K τ -Path (TKTP) uses TKTP to identify groups in which z and x have positive, negative,
or null relationships, respectively. TKTP is only run for smaller samples due to computational limitations.
For Weight variants, first stage coefficients are estimated using groups, and then those coefficients are used
to generate weights. See Section IV.v for data-generating process.
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Figure 8: GroupSearch Using Different Numbers of Groups

Deviation is relative to parameter identified in expectation. At each sample size, 1,000 random samples are
drawn. GroupSearch (GS) estimates use a grouping of the specified number of groups from the best of 100
random groupings generated. See Section IV.vi for data-generating process.

model, and second, attempting to recover the ATE among compliers, as described in Section

II.iii.

While the TKTP feasible estimator will naturally produce 1-3 groups, this paper offers

relatively little guidance in selecting the number of groups for GroupSearch, or any other

method that splits the sample into groups, such as how I use causal forest in Section VI.

Cross validation, a standard tool for selecting parameters, does not make much sense for

GroupSearch where the groups are selected randomly. The only restriction the model does

outline is that there should not be so many groups such that γ̂g is very noisily estimated.

Here I examine the extent to which this is likely to be an issue by performing GroupSearch

with different numbers of groups {2, 4, ..., 16}. The distribution of γi is changed such that

γi ∼ U [0, 1/4.5] so there is not a true underlying number of groups.

At least in these simplified settings, increasing the number of groups monotonically im-

proves performance, even at very low sample sizes where there are fewer than ten observations
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in each group. The tradeoff inherent in increasing the number of groups between increasing

noise in γ̂g and increasing V ar(γ̂g) has not yet reached a point where small-sample bias

increases. It seems likely that the model is highly overfit with 16 groups in 100 observations,

but this does not harm performance of the estimator. Performance of the SLATE estimator

in previous sections could be improved further with the use of more groups.

V. RECOVERING THE ATE AMONG COMPLIERS

Section II.i shows that, unless the effect of the instrument takes only two values, one of

which is 0 (as in the canonical LATE description), then the LATE identified by IV is not

equivalent to “the ATE among compliers.” As discussed in Section II.iii, however, the

ATE among compliers can be recovered if there are no defiers, and the proposed weighting

estimator uses a weighting scheme where wi = 0 ∀ γi = 0 and wi = (Fγi)
−1/4 otherwise.

Here I use the original DGP from section IV of β = {1, 2, 3, 4} and γ = {0, .075, .15, .223}

and apply the ATE-recovering weighting scheme. Under these settings, the ATE among

compliers is (2 + 3 + 4)/3 = 3, and the IV-identified LATE is (.075 ∗ 2 + .15 ∗ 3 + .223 ∗

4)/(.075 + .15 + .223) = 3.33. I present deviation from the ATE among compliers.

I estimate the model three ways: using 2SLS, using an infeasible weighted estimator that

uses the known true γi values, and using GroupSearch with four groups to estimate the γi

values, setting weights to 0 for γ̂i ≤ 0.

Figure 9 shows the results. As demonstrated, the weighting method with p = −1/4

approaches the ATE among compliers. However, this only works with large sample sizes,

and even then only when the true γi values are known. That this only works with large

samples, even with true γis, makes sense. Decreases in p should increase bias at small

sample sizes. So, this method offers promise for uncovering the ATE among compliers, but

only if samples are large and very accurate estimates of the γis can be made.
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Figure 9: Deviation from ATE Among Compliers

At each sample size, 1,000 random samples are drawn. Weight estimates use a GroupSearch (GS) grouping of
four groups from the best of 100 random groupings generated. The first stage coefficients are estimated using
those groups, and then those coefficients are used to generate weights. See Section V for data-generating
process.

VI. APPLICATION

In this section I demonstrate the real-world applicability of the proposed grouping estimator

by replicating Angrist, Battistin, and Vuri (2017) (ABV). ABV looks at the effect of class

size on student test scores, finding that much of the positive effect of smaller class sizes in

Italy may be due to the fact that it is easier for teachers to manipulate test scores in smaller

classes. The paper identifies the effect of class sizes using a combination of the presence

of randomly-assigned test monitors and class-size-maximum rules similar to the well-known

Maimonides rule (Angrist and Lavy, 1999).

ABV offers a useful setting for replication in this paper. First, data and replication

code is freely available.13 Second, ABV allows me to demonstrate the use of the proposed

estimator in a multiple-instrument setting. Third, the sample is large enough that I can

13See https://www.aeaweb.org/articles?id=10.1257/app.20160267

31

https://www.aeaweb.org/articles?id=10.1257/app.20160267


Figure 10: Grade 5 Pre-Reform Enrollment and Class Size (ABV Figure 2b)

demonstrate the small-sample properties of the estimator by selecting subsamples of different

sizes. Fourth, as will be shown, the instrument in ABV is very strong, and so replication will

demonstrate that the usefulness of the proposed estimators is not limited to cases of weak

instruments.

Fifth, this is a setting in which the effect of the instrument should vary over the sample.

While monotonicity seems likely to hold, adherence to the Maimonides rule is not perfect.

Compliance can be graphically shown to vary with enrollment, and presumably varies by

other factors as well. Figure 10, copied from ABV Figure 2b, demonstrates variation in

adherence to the rule.

I focus first on replicating ABV Table 6, which regresses math and Italian language

scores on class size (interacted with an indicator for being monitored), using class sizes

predicted by the class-size-maximum rule, interacted with an indicator for being monitored,

as instruments. Estimation uses 2SLS with standard errors clustered at the school × grade

level. A long list of controls are included.14 Analysis is performed separately by region.

14Controls include percent female, percent immigrant, father’s education, mother’s employment status,
school enrollment by grade (and squared), distance from class-size-minimum threshold (and distance inter-
acted with enrollment and enrollment squared), survey year, grade, grade enrollment at institution, region
(and region interacted with grade enrollment), and percent students with missing (respectively) gender,
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Table 1 Panel A replicates ABV Table 6. Then, in Panel B, I use GroupSearch as

described in Section III to perform the SLATE grouped estimator. For each of the two in-

struments, I randomly assign five different group identities 100 times, interact group identity

with the instrument, and select the grouping that provides the highest first-stage F-statistic.

The use of five groups is arbitrary, and in the following simulation I also consider ten groups.

I use GroupSearch and the grouping estimator only here because the sample is too large to

feasibly use TKTP, and IV showed that the weighting estimator does not perform well in

idealized settings.

In Panel C, I use causal forests (Athey and Imbens, 2016; Wager, 2018; Athey et al.,

2019) to estimate a first-stage effect for each individual, allowing the effect to vary with all

covariates. Causal forest is an extension of random forest methods. In a random forest,

trees are built by iteratively splitting the sample to reduce prediction error within each

split. Causal forests take a similar approach, but instead of reducing prediction error, they

maximize the difference between splits in the estimated treatment effects. I use default

“honest” causal forest estimations from the R package grf (Athey et al., 2019). Because

overfitting is not a concern, as previously discussed, I generate individual treatment effect

estimates for the full sample rather than using a holdout. The identifying assumptions

necessary to treat causal forest estimates as causal are satisfied in the first stage by the

standard validity assumption of IV.

Using the individual-level treatment effect estimates from the causal forest, I divide the

sample into quintiles based on their estimated effect to form five groups. I use these groups

to implement the SLATE grouped estimator. The causal forest is performed separately for

monitored and non-monitored settings, generating different groupings for each.

Regular IV and the GroupSearch estimator give very similar results in this context. This

is to be expected for GroupSearch given the large sample size, and the fact that the groups

are selected at random - if variation between groups is small, then the proposed estimator

origin, mother’s education, and mother’s occupation.
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in expectation approaches the LATE. The version using causal forest groupings differs from

the original results by more, likely due to an improved ability to find groups with different

treatment effects, but still are very similar.

The weak-instrument test F-statistics worsen for both SLATE estimators. This is because

the proportion of variance explained by the instruments is only somewhat higher in the

SLATE estimators than in 2SLS, but uses many more instruments. As a result, with five

times as many instruments, the first-stage F statistics are slightly more than 1/5 as large.

The lower F-statistic does not translate into worse performance, however. I focus on the

All Italy math score results from Table 1, and estimate the 2SLS and SLATE estimators

by cluster bootstrap (where a number of clusters equal to the original number of clusters

C = 28, 546 are selected with replacement), producing 1,000 cluster bootstrap samples and

performing 2SLS, and then the SLATE grouped estimator using five-group GroupSearch, ten-

group GroupSearch, and causal forest quintiles on each sample. If, following the concerns

of Young (2018), any of the estimation methods is particularly sensitive to the removal of

certain clusters, this will be apparent in the results.

Then, I repeat the cluster bootstrap estimation process, but resampling fewer than

the full number of clusters C. I generate 1,000 cluster bootstrap samples each, sampling

{2−8C, 2−7C, ...2−1C,C} clusters, estimate the IV models, and store the coefficients on the

endogenous variables. Because of the slow speed of estimating causal forests, I only perform

causal forest estimation for sample sizes up to 2−3C.15

For each cluster bootstrap sample I calculate mean absolute deviation from the identified

parameters. Figures 11 and 12 show convergence for both endogenous variables towards the

parameters they identify. If the target is instead the 2SLS result in Table 1, the relative

performance of the estimators does not change.

In both Figures 11 and 12, both the 2SLS and GroupSearch-based estimators have similar

15Causal forest is feasible at larger sample sizes, for example in Table 1, but not at larger sample sizes
1,000 times.
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Table 1: Replication of ABV Table 6 Without and With the Proposed Estimator

Original Results
Math Scores Language Scores

All Italy N/Center South All Italy N/Center South
Class Size × −0.035 −0.039∗ −0.035 −0.031 −0.021 −0.048
Monitored (0.024) (0.021) (0.060) (0.019) (0.017) (0.048)
Class Size × −0.066∗∗∗ −0.042∗∗ −0.143∗∗∗ −0.042∗∗ −0.021 −0.098∗∗

Not Monitored (0.021) (0.018) (0.053) (0.016) (0.014) (0.042)
Monitored −0.174∗∗∗ −0.082∗∗ −0.395∗∗∗ −0.103∗∗∗ −0.055∗ −0.228∗∗∗

(0.041) (0.038) (0.096) (0.033) (0.030) (0.076)
Weak IV F Mon. 44691 34569 12093 44691 34569 12093
Not Monitored 23072 19291 5552 23072 19291 5552

Proposed Grouping Estimator with GroupSearch (5 Groups)
Math Scores Language Scores

All Italy N/Center South All Italy N/Center South
Class Size × −0.036 −0.038∗ −0.038 −0.030 −0.021 −0.047
Monitored (0.024) (0.021) (0.060) (0.019) (0.017) (0.048)
Class Size × −0.066∗∗∗ −0.041∗∗ −0.144∗∗∗ −0.042∗∗ −0.021 −0.097∗∗

Not Monitored (0.021) (0.018) (0.053) (0.016) (0.014) (0.042)
Monitored −0.173∗∗∗ −0.081∗∗ −0.389∗∗∗ −0.104∗∗∗ −0.055∗ −0.229∗∗∗

(0.041) (0.038) (0.096) (0.033) (0.030) (0.076)
Weak IV F Mon. 8943 6919 2423 8948 6917 2419
Not Monitored 4615 3858 1111 4615 3858 1110

Proposed Grouping Estimator with Causal Forest Quintiles (5 Groups)
Math Scores Language Scores

All Italy N/Center South All Italy N/Center South
Class Size × −0.029 −0.041∗∗ −0.034 −0.024 −0.022 −0.040
Monitored (0.023) (0.021) (0.060) (0.019) (0.017) (0.048)
Class Size × −0.069∗∗∗ −0.042∗∗ −0.142∗∗∗ −0.042∗∗ −0.024 −0.087∗∗

Not Monitored (0.021) (0.018) (0.053) (0.016) (0.014) (0.042)
Monitored −0.191∗∗∗ −0.076∗∗ −0.393∗∗∗ −0.117∗∗∗ −0.056∗ −0.223∗∗∗

(0.039) (0.037) (0.094) (0.031) (0.030) (0.075)
Weak IV F Mon. 9435 7081 2465 9417 7024 2468
Not Monitored 4793 3933 1140 4795 3903 1139

Note: Panel A replicates Angrist, Battistin, and Vuri (2017) Table 6. Panels B and C repeat
that analysis using the grouped SLATE estimator, with GroupSearch and causal forest to
identify groups, respectively. See Section VI. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 11: Performance in Replication of ABV Monitored × Class Size

Deviation is relative to the full-sample estimate in Table 1. At each sample size, 1,000 cluster-bootstrap
samples are drawn. GroupSearch (GS) estimates use five (ten) groups based on the best of 100 randomly
selected groupings. Causal Forest (CF) estimates use default settings in the R grf package, and quintiles
of estimated effects are used. Causal Forest is only estimated for smaller samples due to computational
limitations.
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Figure 12: Performance in Replication of ABV Not Monitored × Class Size

Deviation is relative to the full-sample estimate in Table 1. At each sample size, 1,000 cluster-bootstrap
samples are drawn. GroupSearch (GS) estimates use five (ten) groups based on the best of 100 randomly
selected groupings. Causal Forest (CF) estimates use default settings in the R grf package, and quintiles
of estimated effects are used. Causal Forest is only estimated for smaller samples due to computational
limitations.
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performance in the largest samples. However, all SLATE estimators tested outperform 2SLS

in smaller samples. The version using causal forest to generate first-stage groups performs

particularly well, and continues to outperform 2SLS in larger samples. This makes sense

given that the performance gains are tied to the ability to find groups over which γg varies,

and causal forest should be more successful at that task than GroupSearch.

This replication shows the power of the proposed estimators to improve performance

considerably, even in this setting where samples are relatively large and, as can be seen in

Table 1, the instrument is very strong and so typical diagnostics would not warn about weak

instruments. In Figure ??, at 1/2 of the original clusters (C = 14, 273, N ≈ 110, 000), there

is a small difference: the GroupSearch methods outperform 2SLS by about .4%. At 1/8 of the

original clusters (C = 7, 136, N ≈ 33, 000), the GroupSearch methods improve upon 2SLS by

1.3%, and the causal forest approach improves upon 2SLS by 13.4%. At the smallest sample

tested (C = 111, N ≈ 1, 000), mean absolute deviation in the proposed estimator is 22.6%

lower than the mean absolute deviation in 2SLS for the 10-group GroupSearch method, and

19.2% lower for causal forest.

VII. CONCLUSION

Instrumental variables is at an odd point in its history. It seems that economists in general

have grown more skeptical about instrument validity assumptions, or at least have shifted

to higher standards for instruments. For example, compare Miguel and Satyanath (2011)

to Sarsons (2015) on the use of rainfall as an instrument. In addition to the theoretical

assumptions necessary to use IV, the statistical properties of IV are also a point of con-

cern. Recent meta-analytic studies on IV as it is performed show that studies often suffer

from inadequate power (Young, 2018), and heightened sensitivity to heteroskedasticity and

clustering (Andrews et al., 2019).

The reconstruction of IV necessarily must proceed on both fronts. Theoretical improve-

38



ments can come from stricter evaluation of exclusion restrictions as well as a series of new

IV estimators that, at least in some contexts, weaken the reliance on validity (Kolesár et al.,

2015; Windmeijer et al., 2018). Versions of the IV estimator that make statistical improve-

ments under small samples or weak instruments already exist, especially under homoskedas-

ticity, but are not applied at anywhere near a universal scale, even in top publications (see

Andrews et al. 2019 for a review, as well as Chao and Swanson 2005 for the related literature

on estimation with many weak instruments). Statistical improvements can come from more

consistent application of methods robust to weak instruments.

This paper examines the implications of heterogeneity in the impact of an excluded

instrument on an endogenous variable in instrumental variables estimation. I then introduce

an estimation approach that incorporates heterogeneity in the first-stage estimate, reducing

small-sample bias when the underlying effect is heterogeneous. This approach identifies a

super-local average treatment effect (SLATE) that weights observations with strong first-

stage effects more strongly than they are already weighted in a local average treatment

effect (LATE).

The group-interaction variant of the SLATE estimator, which outperforms the weighting

variant, has the benefit of being extremely simple. It can be implemented in any linear

IV context without modifying the estimation method or code except to add a method for

identifying groups. As opposed to other small-sample robust IV methods, researchers may be

more willing to implement a SLATE estimator for this reason. The group variant of SLATE is

simple enough that other papers have already implemented it using group covariates already

in their data, although to my knowledge no paper doing so has reported estimating a SLATE,

which they should be aware of.

The simulations in this paper find considerable success for the group SLATE estimator

even in poor conditions. Researchers can achieve improved performance with a SLATE

estimator even if the group-identification method performs no better than GroupSearch,

which operates via naive random repeated selection, although results will improve further
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using causal forest or another method that uses covariates to model effect heterogeneity.

Further, the group SLATE estimator provides improved performance relative to 2SLS under

heteroskedasticity, even though it is not derived with heteroskedasticity in mind, while many

small-sample robust estimators rely on homoskedasticity (Andrews et al., 2019).

SLATE is also capable of improving robustness to monotonicity violations, at least under

some conditions. Standard IV, as well as its small-sample-robust variants, are not robust to

violations of monotonicity, and generally rely on assuming that monotonicity holds.

In addition to these general benefits of using a group-interaction SLATE estimator, right

now is an opportune time to introduce the modeling of first-stage heterogeneity. The pro-

posed estimator is most powerful when heterogeneity in the IV first stage is well-understood.

While hierarchical modeling has long allowed for effect heterogeneity to be closely modeled,

this approach relies on random-effects assumptions that economists have been skeptical of,

and it is not common to use hierarchical modeling in the first stage of an IV model. Re-

cent developments overlapping with computer science have improved the ability to estimate

heterogeneity in treatment effects. Top-k τ -Path does not perform particularly well in my

simulation, but causal forest considerably approves performance in an applied context. These

advances, which are still developing, make the SLATE estimators more powerful.

Of course, this paper’s method only improves IV estimation along the lines of relevance

and monotonicity. It does not address validity, and while its improved small-sample prop-

erties cancel out some of IV’s weakness to clustering in simulation, the estimator does not

directly address the issue. Improving small-sample properties does not matter much if ex-

clusion restrictions are looked upon with increasing skepticism. Still, IV is still used in

cases where exclusion restrictions may be considered more defensible, like in cases of fuzzy

regression discontinuity, measurement error, or imperfect random assignment, and here an

improvement in statistical performance can be combined with solid theoretical assumptions.

Future work combining first-stage heterogeneity with the novel crop of IV methods more

robust to violations of validity would be valuable.
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Appendix A. Appendix

Figure A.13: Performance Using Feasible Estimation - Linear Specification

At each sample size, 1,000 random samples are drawn. GroupSearch (GS) estimates use a grouping of four
groups from the best of 100 random groupings generated. Top-K τ -Path (TKTP) uses TKTP to identify
groups in which z and x have positive, negative, or null relationships, respectively. TKTP is only run for
smaller samples due to computational limitations. For Weight variants, first stage coefficients are estimated
using groups, and then those coefficients are used to generate weights. See Section IV.i for data-generating
process.
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