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Abstract

This paper examines the macroeconomic consequences of a demographic transition in an
environment where households can hold diverse portfolios of risky and safe assets at different
points in their life cycle. These assets are issued by businesses in order to finance their activities.
Businesses are heterogeneous with respect to how productive they are in different states of the
world, and therefore pursue different combinations of safe and/or risky securities issuance when
financing projects. I simulate a demographic transition calibrated to replicate the expected
demographic evolution of current West African economies. This results in modest increases in
output, larger increases in saving as a whole and, in particular, in a relative increase in saving in
the form of safe assets. Lower capital costs lead to business entry (and more asset issuance) and
to a tilt towards safe asset issuance; a mechanism I call the business asset supply channel. I show
that omitting this channel, as models with a representative firm do, results in an overestimation of
the effects of the demographic transition, with larger interest rate reductions and an exaggerated
demographic dividend.
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1 Introduction

The macroeconomic impact of demographic transitions – the process by which societies move from

a context of high birth and death rates to one where both rates are relatively lower – is a subject

that has been extensively studied by both demographers and economists. Important transmission

channels like the evolution of the labor force, changes in savings and interest rates, implications for

average labor productivity, and the impact on ideas, innovation and business startup rates, have

been identified, but the debate is as alive as ever, fueled by population aging concerns in developed

economies.1

While a lot of the recent research has focused on how population aging will impact advanced

economies like Japan, the U.S. or Western European countries, many countries around the world are

still in the early stages of their demographic transition. Figure 1 shows the predicted evolution of the

share of population older than 65 and conveys just how diverse the current cross-country situation is

and will continue to be. The demographic transition simulation I conduct is not supposed to portray

the near future of a developed economy; it is instead designed to capture the changes a currently

young and developing region like West Africa will undergo, as their demographic characteristics

move towards those of today’s advanced economies. These details are important because changes to

a population’s demographic structure have important consequences not only for aggregate saving,

but also for the allocation of saving across different asset types.

The demographic transition simulation is characterized by an increase in household saving and,

in particular, by a relative increase in the demand for safe assets.2 This, in turn, lowers interest

rates (safe rates, in particular) and the cost of capital, encouraging two effects that have important

implications for asset markets and macro variables: (i) business entry increases, and therefore so

does asset issuance; (2) businesses change their financing asset mix towards safe issuance. These

effects push against the downward pressure on interest rates, a mechanism I call the business asset

supply channel. I argue this is a quantitatively important channel, in the sense that ignoring it leads

1For each of the channels mentioned, see Gagnon, Johannsen, and Lopez-Salido (2016), Carvalho, Ferrero, and
Nechio (2016), Feyrer (2007), Acemoglu and Restrepo (2017), and Karahan, Pugsley, and Şahin (2019). For surveys
see Bloom, Canning, and Sevilla (2001), Birdsall, Kelley, and Sinding (2003), Lee (2016), and Iparraguirre (2020).

2In the context of more developed, aging, economies, Bernanke, Bertaut, Demarco, and Kamin (2011) was the first
to talk about a savings glut, while Caballero, Farhi, and Gourinchas (2017) emphasized that the supply of safe assets,
in particular, have not kept up with increases in demand.
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Figure 1: Share of the population older than 65 (UN predictions)
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to a substantial overestimation of the transition’s impact on interest rates and growth in capital and

output – the so-called demographic dividend.3

The standard approach designed to capture the impact of a demographic transition on saving

and interest rates focuses on how household savings behavior changes over the life-cycle (because of

changes in dependency ratios, income profiles and longevity, among others). Households are usually

assumed to save in the form of capital and/or a government bond. The production side is usually

modeled by assuming a representative firm that rents all, or part, of household savings and uses it

in the form of capital.

Here, I depart from this setup by introducing production-side heterogeneity (in addition to the

life-cycle heterogeneity on the household side). In the model economy, producers are endowed with

different levels of managerial ability in different aggregate states of the world, and can finance

their projects by issuing different types of securities: state-contingent and non-state-contingent.

The demand for the two types of securities comes from households at different stages in their life-

cycle. Pre-retirement and retired households demand riskless securities, while younger households

3For recent examples, besides the ones already cited, of research emphasizing the impact of the demographic
transition on macroeconomic variables through changes in savings and interest rates, see Lisack, Sajedi, and Thwaites
(2017), Auclert, Martenet, and Malmberg (2019), and Liu and Poonpolkul (2020). On the empirical side, Lunsford
and West (2019) find that changes in demographic variables are one of the leading explanations for the decrease in
real U.S. interest rates in the last 30 years.
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demand state-contingent securities. In the model this is hardwired into preferences (risk-neutral

vs. infinitely risk-averse), but this is simply a modeling device designed to capture the fact that

older household’s portfolios emphasize safer assets. In a recent study using Norwegian household tax

records, Fagereng, Gottlieb, and Guiso (2017) find that, as they approach retirement, households

substantially reduce their exposure to risky assets, increasing their exposure to safe ones. Using

consecutive cohorts, they are able to sidestep two problems that have hitherto plagued attempts to

measure how household portfolios vary with age: cohort effects (previous studies, like the evidence

cited in Guiso, Haliassos, and Jappelli (2002), looked mostly at cross-sectional data) and endogenous

stock-market participation.

Another way in which the model departs from the literature is in allowing for aggregate uncer-

tainty within an overlapping-generations framework: most models in the literature are populated

by either perfectly foresighted households, or feature idiosyncratic uncertainty.4 The presence of ag-

gregate uncertainty is necessary when dealing with state-contingent and safe assets simultaneously.

This allows for time varying interest rates on the different assets and correspondingly time-varying

financing policies for businesses.

Like most models in this literature that emphasize the savings channel, I also find that a demo-

graphic transition leads to an increase in aggregate saving. Not only because the share of savers

increases, but also because of reductions in the marginal propensity to consume (due to increases

in expected longevity and reductions in the number of children). The main difference relative to

representative firm models is that as saving increases and puts downward pressure on interest rates,

producers react and change their financing policies: by issuing more of those securities that see more

downward pressure on interest rates, and importantly, by activating projects that were not profitable

at higher interest rates. In a counterfactual exercise, I show that the presence of producer-side het-

erogeneity and the resulting changes in financing policies lead to a sizable difference in the behavior

of interest rates, productive capital, and output along the transition.

World economies have been undergoing demographic transitions since the 18th century.5 It

did not take long for economists and demographers to start speculating about the effects of such

4See Carvalho, Ferrero, and Nechio (2016), Lisack, Sajedi, and Thwaites (2017), Auclert, Martenet, and Malmberg
(2019), and Liu and Poonpolkul (2020) for recent examples.

5See Delventhal, Fernández-Villaverde, and Gunner (2019) for an excellent and thorough survey of demographic
transitions across time and around the world.
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demographic changes: Malthus published An Essay on the Principle of Population in 1798. More

recently, Coale and Hoover (1958) was perhaps the first instance where the savings channel, as the

nexus between demographic changes and economic growth, was put forward more formally. The

term demographic dividend loosely captures the benefits from a potential acceleration in growth

an economy may experience following a demographic transition, particularly one characterized by

reductions in fertility. My work contributes to this literature by arguing that models that attempt

to structurally measure the magnitude of the demographic dividend risk severely overestimating it

if they ignore the business asset supply channel.6

2 The environment

Time is discrete and infinite and there is aggregate uncertainty about the state of the economy. The

aggregate shock η ∈ {L,H} can be low (L) or high (H) and follows a first-order Markov process with

known transition function M : {L,H} → {L,H}. I assume that M is irreducible, hence globally

ergodic.

There are two types of finitely-lived agents in the economy: households and producers. The

latter are endowed with an idiosyncratic project ability that depends on the aggregate shock in a

way to be made clear below, but lack funds to start a project. In order to do so, they sell securities

to the households, whom I now cover in more detail.7

2.1 Households

Each period, a new cohort of households, who may live for a maximum of six periods, is born. The

size of each consecutive cohort is time-varying, as birth rates and survival rates may change over

time. Given the measure of each cohort Nj,t, for j = 1, · · · , 6, denote the total household population

alive at time t by Nt =
∑6

j=1Nj,t and the growth rate of this population by 1 + gt = Nt/Nt−1. The

share of households in each cohort alive at time t is given by shj,t =
Nj,t

Nt
, for j = 1, · · · , 6. Each

cohort faces a time-varying survival probability given by sj,t, for all t and j = 1, · · · , 6, with s1,t = 1

6It is important to emphasize that recent contributions to this literature call into question whether the demographic
dividend is brought about by changes in age structure at all, arguing instead that human capital improvements trigger
both a demographic transition and the ensuing economic growth (see Galor and Weil (2000)).

7A more streamlined, two-period, version of this setup is studied in Amaral and Quintin (2020).
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Figure 2: Household timeline

periodst− 2 t− 1 t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5

Children:

no economic decisions
survive with probability 1

Young adults:

work, consume, have children at rate bt
save and survive with probability s2,t

Prime-aged adults:

work, consume, save
survive with probability s3,t+1

Pre-retirement adults:
work, consume, save

survive with probability s4,t+2

Early retirees:

consume,save
survive with probability s5,t+3

Old retirees:

consume and die

and s6,t = 0.

Households value their own lifetime consumption and that of their progeny (while they are

children). In broad terms, households start out their lives with a childhood period when they make

no meaningful economic decisions: they do not work and their consumption is determined by their

parents. For the next three periods, households are endowed with one unit of labor per period which

they deliver inelastically in return for a wage that they use for consuming and saving – in the first

of these periods, households also have children at a rate, bt =
N1,t

N2,t
. Finally, there are two retirement

periods, when households simply consume the return on their savings. Figure 2 helps envision the

households’ life cycle.8

The households’ instantaneous period preferences changes as they age. Households are risk-

neutral with respect to consumption bundles all the way up to their pre-retirement period, when

they become infinitely risk-averse. As discussed in the Introduction, this is a modeling device

designed to capture the kind of life-cycle differences in portfolio composition found in Fagereng,

Gottlieb, and Guiso (2017), and in this particular case it implies that households own different types

8Note that while I am assuming that age 1 cohorts survive with probability 1, mortality at young ages is still
captured in the calibration below through appropriately lower birth rates.
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of securities depending on their age. Note that there is no internal inconsistency as far as household

decision-making is concerned: households fully anticipate their preferences will change and plan

accordingly. I make this assumption because the alternative – having households optimally hold

different types of securities simultaneously and having the shares of those holdings change with age

– is much more complicated to model, with arguably little upside.

It will help to think of households, in their capacity as investors, as being of two types: one

type in their young-adult and prime-aged periods, and another type in their pre-retirement and

early retirement periods. Below, in Section 2.2, I assume that producers sell securities to each type

separately. I then show that, given household preferences, the securities producers optimally sell

to old, infinitely risk-averse, households pay a non-contingent dividend. As a result, I call these

securities safe (S), while the securities younger agents buy are called risky (R), as their dividends

may be contingent on the state of the world.

Households observe the period’s aggregate shock, ηt, before making any decisions. In the first

period of their adult lives they choose a consumption bundle for themselves and their children, along

with purchases of securities from producers (to be detailed below), subject to the wage rate they earn.

In the second and third periods of their adult lives, they receive not only a wage income, but also the

returns on their security portfolios, which they use to consume and update their security portfolio.

Throughout their working life, their wage income is subject to a proportional tax τ that funds social

security payments. The aggregate tax proceedings are invested for one period at the safe rate of

return and then disbursed equally among retirees.9 In their first retirement period households may

also continue to save, while in their second retirement period they simply consume their income.10

Finally, there are also incidental bequests: starting in their young adulthood, households receive a

bequest in the form of an equal share of the liquidated assets owned by the non-surviving fraction

of their parents’ cohort.

A household born in period t− 1 takes as given wage rates {wt+j}2j=0 and the menus of security

returns offered by different producers
{
Rit+j(z, η)

}4

j=1
in each state of the world, for the two different

security types i = R,S and chooses a consumption profile {cj,t+j−2}6j=2 and security holdings from

9The assumption that there is a one-period delay in the pay-as-you go scheme is important for Proposition 1 below.
10I opted for modeling retirement has having two periods to account for the fact that the increases in life expectancy

have not been, in general, accompanied by corresponding increases in retirement age. See, for a similar approach,
Carvalho, Ferrero, and Nechio (2016).
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each producer z, {aj,t+j−2(z)}5j=2 so as to solve:

maxEt

{
γ (1 + bt) log c1,t(ηt)+ log c2,t(ηt) + s2,tβ log {Et (c3,t+1(ηt+1)|ηt)}+ s3,t+1β

2 log {Et+1 (c4,t+2(ηt+2)|ηt+1)}

+s4,t+2β
3 log {min (c5,t+3(L), c5,t+3(H))}+ s5,t+3β

4 log {min (c6,t+4(L), c6,t+4(H))}

}
s.t. c1,t(ηt) + c2,t(ηt) +

∫
Zt

a2,t(z, ηt)dµ ≤ (1− τ)(1 + π2)wt + b2,t,

c3,t+1(ηt+1) +

∫
Zt

a3,t+1(z, ηt+1)dµ ≤ (1− τ)(1 + π3)wt+1 + b3,t+1 +

∫
Zt

a2,t(z, ηt)R
R
t+1(z)dµ,

c4,t+2(ηt+2) +

∫
Zt

a4,t+2(z, ηt+2)dµ ≤ (1− τ)(1 + π4)wt+2 + b4,t+2 +

∫
Zt

a3,t+1(z, ηt+1)RR
t+2(z)dµ,

c5,t+3(ηt+3) +

∫
Zt

a5,t+3(z, ηt+3)dµ ≤ b5,t+3 + pt+3 +

∫
Zt

a4,t+2(z, ηt+2)RS
t+3(z)dµ,

c6,t+4(ηt+4) ≤ pt+4 +

∫
Zt

a5,t+3(z, ηt+3)RS
t+4(z)dµ,

c1,t, c2,t, c3,t+1, c4,t+2, c5,t+3, c6,t+4 > 0,

where the incidental bequests are given by

b2,t =
sh2,t−1

sh2,t

1− s2,t−1

1 + gt

∫
Zt

a2,t−1(z)RRt (z)dµ,

b3,t+1 =
sh3,t

sh3,t+1

1− s3,t

1 + gt+1

∫
Zt

a3,t(z)R
R
t+1(z)dµ,

b4,t+2 =
sh4,t+1

sh4,t+2

1− s4,t+1

1 + gt+2

∫
Zt

a4,t+1(z, ηt+1)RSt+2(z)dµ,

b5,t+3 =
sh5,t+2

sh5,t+3

1− s5,t+2

1 + gt+3

∫
Zt

a5,t+2(z, ηt+2)RSt+3(z)dµ,

and the social security benefits are given by:

pt+3 =

∫
Zt+2

tt+2(z, ηt+2)RSt+3(z)dµ

(1 + gt+3)
∑6

j=5 shj,t+3

,

pt+4 =

∫
Zt+3

tt+3(z, ηt+3)RSt+4(z)dµ

(1 + gt+4)
∑6

j=5 shj,t+4

,

where tt(z, η), the amounts invested by the social security fund across producers that issue safe
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securities must sum up to the total tax revenues:

∫
Zt+2

tt+2(z, ηt+2)dµ = τwt+2

4∑
j=2

shj,t+2(1 + πj),

∫
Zt+3

tt+3(z, ηt+3)dµ = τwt+3

4∑
j=2

shj,t+3(1 + πj).

In making decisions, households must form expectations regarding future earnings, possibly sev-

eral periods ahead. For example, when young adults decide on how much to save they need to

conjecture what their income will be for the remainder of their lifetime. The rational expectations

solution to OLG models with various cohorts and aggregate uncertainty is computationally chal-

lenging, unlike, say, the perfect foresight solution.11 To make such challenge less burdensome, and

because the main computational contribution of this piece is on solving the asset supply problem of

heterogeneous producers described below, I posit an alternative expectation formation mechanism.

Households form expectations by regressing variables of interest on their information set, which

includes the path of all past variables up to the decision moment. In practice, and as shown in Ap-

pendix section D, I start by assuming households have perfect foresight over demographic variables

and regress future discounted wages and interest rates on lags of the state variables: the aggregate

shock and aggregate asset holdings of each security type. In the appendix, I also argue that the

resulting estimates share a crucial aspect with their rational expectations counterparts: the fact that

agents are very close to being “right” on average.

2.2 Producers

There is a large mass of two-period lived producers, whose size changes at the same rate as the

household population. Each endowed with an ability vector z = (zL, zH) ∈ IR2
+, indexing their skills

in operating a project in the two states of the world during the first period of their lives. Let µ(Z)

denote the mass of producers living in a given Borel set Z ⊂ IR2
+ in each period. In the upcoming

calibration, I set this distribution µ in such a way that zH > zL for most producers, which means

the equilibrium aggregate producer profits and overall production are higher, on average, in good

11See, for example, Reiter (2015).
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times (H) compared to bad times (L) – hence the names. But the economy also contains producers

whose profits are counter-cyclical, namely those that happen to be very productive in bad times.

In the first period of their lives, producers can choose to operate a project before the aggregate

uncertainty shock is realized. In order to do so they must pay an entry cost (proportional to

population) of Nte ≥ 0 units of the consumption good and commit whatever operational capital

kt(z) > 0 they plan to use. A project that is activated and operated by a producer of type z with

kt ≥ 0 units of capital and nt ≥ 0 units of labor yields gross output

y (kt, nt; z(ηt)) = z(ηt)
(
kαt n

1−α
t

)ν
at the end of the period, once state η is realized, and where α, ν ∈ (0, 1).

Producers value consumption in both periods of their lives. The consumption bundle of a time

t-born producer is a non-negative vector: (cy,t, co,t+1(L), co,t+1(H)) where cy,t is their consumption

at the start of the first period of their life, before the period t shock is realized and production

takes place, while (co,t+1(L), co,t+1(H)) is their second-period consumption, which depends on the

realization of the aggregate shock at the end of time t. These consumption profiles are ranked

according to linear preferences:

cy,t + εE (co,t+1(ηt)|ηt−1) ,

where ε is a small but positive number. Following the realization of the aggregate shock, conditional

on having activated a project with capital kt, and taking the wage rate wt as given, a producer of

skill z chooses the labor input nt by solving

Π(kt, wt; z(ηt)) ≡ max
nt>0

y (kt, nt; z(ηt))− ntwt,

where Π denotes net operating income.

Since they lack funds to operate and finance the activation of a project, producers who become

active obtain external funds by selling securities (claims to their output) to households. The funda-

mental friction in this process is that selling securities to one type of household (either pre-retirement

or younger) is costless, whereas selling securities to two different types carries a cost (proportional

to population) Ntζ > 0. One way to rationalize this is to think of the markets for the two types as

10



being segmented and subject to different regulations, for example related to retirement, in such a

way that operating in multiple security markets is more onerous than operating in a single market.

But more broadly, one can think of ζ as proxying for costs associated with managing a more complex

capital structure.

I follow Allen and Gale (1988) in assuming that producers take the households’ willingness to

pay for different securities as given when making their own security issuance decisions. A security is

a mapping from the aggregate state to non-negative dividends.12 Denote by qi,t(xi,t(L), xi,t(H)) the

price households are willing to pay for a marginal amount of a securities of type i = R,S that has

payoffs (xi,t(L), xi,t(H)) ≥ (0, 0) at date t in each respective state of the world. Note that so far, I

am not requiring safe securities (i = S) to have non-contingent payoffs: that will be a consequence

of the assumptions on preferences. All I am requiring at this point is that the securities sold to the

two different types of households (pre-retirement versus younger) may be different and that selling

to both types simultaneously carries a cost.

Producers of type (zL, zH) that decide to activate their projects, choose capital kt > 0 and

non-negative security payoffs (xi,t(L), xi,t(H)) for i = R,S, in order to maximize

cy,t + εE (co,t+1(ηt)|ηt−1)

subject to

cy,t ≤ qS,t (xS,t(L), xS,t(H)) + qR,t (xR,t(L), xR,t(H))− kt −Nt

(
e+ ζ1{xS,t>0,xR,t>0}

)
,

co,t+1(L) ≤ Π(kt, wt(L); zL)− xS,t(L)− xR,t(L),

co,t+1(H) ≤ Π(kt, wt(H); zH)− xS,t(H)− xR,t(H),

where the indicator function 1{xS,t>0,xR,t>0} takes the value one if both types of securities are is-

sued, in which case the producer must bear cost η, and the value zero otherwise. The first con-

straint in this problem states that the producer gets to consume whatever is left over of their

proceeds from selling securities, qS,t (xS,t(L), xS,t(H)) + qR,t (xR,t(L), xR,t(H)) , after all costs, kt +

Nt

(
e+ ζ1{xS,t>0,xR,t>0}

)
, have been covered. Producers only become active if they can meet this

constraint, as in that case they can enjoy non-negative consumption compared to their opportunity

12Allowing for negative dividends (short-selling) would pose existence problems even in one-period versions of the
model. See Allen and Gale (1988).
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cost of not becoming active, which is zero. The second and third constraints state that, in each

state of the world, producers must be able to cover all their security payments with their operating

income.

2.2.1 Security pricing and equilibrium

A key feature of the equilibrium I am about to define is that the households’willingness to pay

for securities has to coincide with the pricing functionals implied by the security payments set by

producers.

Recall that households take as given the set of securities available at the start of a particular

period. From their point of view, they face a menu of security returns:

Rit(z, η) =
xi,t(z, η)

qi,t(xi,t(z, L), xi,t(z,H))
,

for the securities of type i = {S,R} issued by producers of type z = (zL, zH), with the convention

that Rit(z, η) = 0 if type z is inactive.

Since they have risk-neutral preferences, young-adults and prime-aged adults purchase securities

from those producers offering the highest expected return. Therefore, letting

R̄Rt = max
z
M (L|ηt−1)RRt (z, L) +M (H|ηt−1)RRt (z,H),

these agents are willing to pay:

qR,t(x(L), x(H)) =
M (L|ηt−1)x(L) +M (H|ηt−1)x(H)

R̄Rt

for a marginal investment in a security with payoff (x(L), x(H)) at date t.

Pre-retirement and recently retired agents, on the other hand have Leontieff preferences over

their remaining consumption plans. Consider such agents alive at time t and define

R̄S4,t ≡
min (c5,t(L), c5,t(H))

a4,t−1
, and R̄S5,t ≡

min (c6,t(L), c6,t(H))

a5,t−1

as the effective return these agents realize on their investment at the optimal solution to their prob-
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lem. Anticipating the definition of equilibrium to simplify exposition, note that because producers

sell the same securities to cohorts j = 4, 5, we will have R̄St = R̄S4,t = R̄S5,t.

If cj,t(H) > cj,t(L) at the optimal solution, the willingness to pay for a marginal investment in

a security with payoffs (x(L), x(H)) of an agent of cohort j = 4, 5 is

qS,t(x(L), x(H)) =
x(L)

R̄St
.

That is because they only value marginal payoffs in the lowest consumption state in that case.

The symmetric condition must hold when cj,t(H) < cj,t(L). Finally, when c5,t(L) = c5,t(H) and

c6,t(L) = c6,t(H), which, I will argue below, must hold in equilibrium at all dates,

qS,t(x(L), x(H)) =
min(x(L), x(H))

R̄St
.

Let agents of ages j = 2, · · · , 5 enter date 0 with wealth aj,−1 > 0. Then, the state of the

economy at date 0 is fully described by Θ0 = {aj,−1, η−1}, j = 2, · · · , 5, where η−1 ∈ {L,H} is

the aggregate shock at date t = −1. Producers only produce when young hence do not accumulate

resources. All active producers must therefore raise all the funds they use from households.

To define an equilibrium it will be helpful to do it in per capita terms, where x̂t = xt
Nt

. A per

capita equilibrium is then defined, for all dates and for all possible histories of aggregate shocks, as

a list of:

• consumption plans {ĉj,t(η)}, for j = 1, · · · , 6 and security purchases {âj,t(η, z)}, for j =

2, · · · , 5 for households;

• a set Zt ∈ Z of active producers and their corresponding consumption plans (ĉy,t(z), ĉo,t+1(η, z)),

capital
{
k̂t(z)

}
, labor {n̂t(z)}, and a menu of security payoffs {x̂i,t(z, ηt)} for security types

i = S,R;

• social security purchases of safe securities from each producer z: t̂t(z, ηt);

• a list of prices: wage rates {ŵt(η)}, payoff pricing functionals {q̂S,t, q̂Rt}, and the associated

returns {RRt (z, ηt)} and {R̄St (ηt)},

such that:
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1. Security purchases and consumption plans solve each household’s problem;

2. Security menus, capital and labor choices and consumption plans solve each producer’s prob-

lem;

3. The goods market clears:

∫
Zt

ŷ(k̂t(z)t, ŵt(η); z)dµ =
6∑
j=1

shj,tĉj,t +

∫
Zt

ĉy,t(z) + ĉo,t(z)dµ

+

∫
Zt+1

(1 + gt+1))k̂t+1(z) + e+ ζ1{x(z)R,t+1>0,x(z)S,t+1>0}dµ;

4. The market for labor clears:

∫
Zt

n̂(ŵt(η); z)dµ =
4∑
j=2

shj,t;

5. The market for each security type clears, i.e., for µ-almost each producer type z:

sh2,tâ2,t(z) + sh3,tâ3,t(z) = q̂R,t (x̂R,t(z, L), x̂R,t(z,H)) , and

t̂t(z) + sh4,tâ4,t(z) + sh5,tâ5,t(z) = q̂S,t (x̂S,t(z, L), x̂S,t(z,H)) ;

6. Social security purchases of safe assets equal tax revenues:

∫
Zt

t̂t(z)dµ = τŵt

4∑
j=2

shj,t(1 + πj);

7. Pricing functionals are consistent with the household’s willingness to pay for marginal payoffs,

i.e.:

(a) q̂R,t(x̂(L), x̂(H)) = M(L|ηt−1)x̂(L)+M(H|ηt−1)x̂(H)

R̄R
t

,

(b) q̂S,t(x̂(L), x̂(H)) = min(x̂(L),x̂(H))

R̄S
t

if ĉj,t(L) = ĉj,t(H) for both j = 5, 6,

(c) q̂S,t(x̂(L), x̂(H)) = x̂(H)

R̄S
t

if ĉj,t(L) < ĉj,t(H) for both j = 5, 6,

(d) q̂S,t(x̂(L), x̂(H)) = x̂(L)

R̄S
t

if ĉj,t(L) > ĉj,t(H) for both j = 5, 6,
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for all possible securities (x̂(L), x̂(H)) ≥ (0, 0) where:

R̄Rt = max
z
M (L|ηt−1)RRt (z, L) +M (H|ηt−1)RRt (z,H),

while

R̄St =
min (ĉj,t(L), ĉj,t(H))

âj,t−1
for both j = 5, 6.

The properties of a two-period version of this type of equilibrium are studied in Amaral and

Quintin (2020). Some of the results carry through to the present environment. In particular, the

following proposition establishes that in equilibrium, retired household consumption is non-state

contingent, and therefore, pre-retirement households only buy safe securities. It also establishes

that the equilibrium return on risky securities has to be larger than that of safe securities, implying

that earlier in life, households choose to purchase risky securities.

Proposition 1. In any equilibrium, the consumption of retired agents is risk-free and they only pur-

chase safe securities. Furthermore, in any equilibrium, R̄Rt ≥ R̄St , with a strict inequality whenever

ζ > 0 and a positive mass of producers issue two securities.

The intuition for the result is straightforward. If the retired agents’ consumption was such that

ĉ5(H) > ĉ5(L) then, a period before, these agents would pay nothing for the H state payoff on any

security, as their marginal valuation of consumption in that state would be zero. Nonetheless, in

order for ĉ5(H) > ĉ5(L) to hold, a positive mass of securities with higher payoffs in the H state

than in the L state must be sold to these agents a period before. But the producers selling those

securities would be strictly better-off either selling the H state payoff to younger agents, or simply

consuming it themselves. The case in which ĉ5(H) < ĉ5(L) can be similarly ruled out.13

The second part of the property follows by contradiction: if it were the case that R̄Rt < R̄St , then

it would not be profitable for any producer to issue securities to pre-retirement agents as they would

always be better off selling risk-free assets to younger (risk-neutral) investors and consuming excess

profits, but this contradicts market clearing for safe securities.

13This argument relies on having contemporaneous consumption depend only on the contemporaneous shock through
the rate of return. Indeed, if pension benefits were purely pay-as-you-go, a transfer that depended on today’s wages
(instead of yesterday’s, as it is the case), then the rate of return that would fully stabilize consumption across states
would no longer be non-state contingent necessarily.
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Another important equilibrium property (again, see Amaral and Quintin (2020) for a formal

argument) is that producers who choose to issue safe securities, issue as much of it as possible. That

is, their non-contingent dividend payment equals their minimum profit across states. What do they

do with the remainder of their profits in the state when their profit is highest? If ζ is low enough

they can pay the security creation cost and issue risky securities. If this is too expensive, they simply

consume the remainder in the second period of their lives.14

In conclusion, at any date t, besides producers that are inactive, there can be three types of

active producers as far as their financing goes. Some of them only sell safe securities to older,

infinitely risk-averse, cohorts: this makes sense for producers whose productivities across states are

sufficiently similar. Others only sell risky securities to younger cohorts in the risk-neutral periods

of their lives: these are producers whose productivities are sufficiently different across states and,

importantly, their productivity in one of the states is so low that it does not make financial sense to

pay the security creation fee to sell both types of securities. Finally, somewhere in between, there

are producers that sell both types of securities and pay the security creation cost.

Having established the main theoretical properties of the model, we can now turn to the main

exercise.

3 Simulating a demographic transition

The main experiment simulates a demographic transition from a steady-state that exhibits the age

structure characteristics of today’s West Africa, to a steady-state where age characteristics are similar

to today’s United States. I picked West Africa because it is the region that features the youngest

population in the United Nations’ World Population Prospects. I picked the U.S because there is

an abundance of data I can use to calibrate the model economy, and while its population is not the

oldest (that being Western Europe or Japan), it is much further along its demographic transition

compared to West Africa. The first step is to map the population data into model parameters for

the initial steady-state, the final steady-state, and the interim transition. Given data on the number

of people in each cohort, Pj,t, for j = 1, · · · , 6, the (model) parameters of interest are cohort survival

14Note that ε is a very small but strictly positive number, meaning that producers who only sell securities to infinitely
risk-averse cohorts are better off consuming any excess profits in the second period of their lives, rather than selling
the right to those cash-flows in the form of contingent securities to infinitely risk-averse cohorts at zero price.
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probabilities sj,t =
Pj+1,t+1

Pj,t
, where it is assumed that s6,t = 0, and birth rates bt =

P1,t

P2,t
.

Steady-states (or balanced growth paths) are useful model concepts, but are usually not a feature

of (real) demographic data: population shares of different cohorts are continuously changing as birth

rates and death rates endogenously move. To get around this difficulty, I build synthetic steady-

states, which I use not only at the start and end of the demographic transition, but also to calibrate

the model economy. Let me postpone the calibration discussion to the next section and first describe

how I turn the raw population data from West Africa and the U.S. into the initial and final steady-

states that bookend the transition.

I start by assuming that each of the 6 model economy cohorts comprises 16 years (henceforth a

model period) and map the age cohorts from the UN data (cohorts of 5 years) into model economy

cohorts: 0-15, 16-31, 32-47, 48-63, 64-79, and 80+. This procedure uses not only current data,

but also estimated data for the future evolution of the populations in the two regions under the

assumption of no migration – the model is not built to deal with migratory flows. Appendix A

provides a more detailed description of this process whose result is summarized in Table 1 containing

cohort populations for the two regions in 2020 and 2036.

Table 1: Model-compatible population (thousands)

West Africa

Years/Cohorts 0-15 16-31 32-47 48-63 64-79 80+

2020 182,527 110,789 63,979 32,082 11,492 993
2036 245,295 173,211 102,820 55,514 19,884 1,775

United States

Years/Cohorts 0-15 16-31 32-47 48-63 64-79 80+

2020 65,007 72,517 67,569 66,968 45,795 13,147
2036 61,782 64,578 70,841 64,116 55,633 24,305

Next, I compute some statistics associated with the 2020-2036 evolution of these populations:

namely the growth rate of the first cohort g1
t+1 = P (1,t+1)

P (1,t) − 1, and the survival probabilities of each

consecutive cohort sj,t = P (j+1,t+1)
P (j,t) , for j = 1, . . . , 5.

Using these parameters, I construct the two synthetic steady-states by simulating the evolution
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Table 2: Model population parameters

sh1 sh2 sh3 sh4 sh5 sh6

West Africa: initial steady-state 0.3745 0.2644 0.1826 0.1179 0.0544 0.0062
US: final steady-state 0.1769 0.1849 0.1900 0.1897 0.1658 0.0926

b s1 s2 s3 s4 s5

West Africa: initial steady-state 0.4162 0.9490 0.9281 0.8677 0.6198 0.1545
US: final steady-state -0.0433 0.9934 0.9769 0.9489 0.8307 0.5307

of the cohort shares starting from an arbitrary interior point.15 Table 2 summarizes the resulting

steady-state model-relevant moments that are then used as parameters in the model economy.

The demographic transition is the path between the two steady-states, which I assume lasts

128 years (8 model periods), with cohort-shares (along with birth rates) adjusting linearly between

steady-states as shown in Figure 3. Delventhal, Fernández-Villaverde, and Gunner (2019) report

transition lengths between 180 and 50 years. While the evolution of the demographic parameters

changes with time, the remaining model parameters are time-invariant and I now go into more details

on how they are set.

Figure 3: Cohort shares in transition

15Convergence to a steady-state in cohort shares occurs very quickly as can be seen in Figure 9 in the appendix for
the West Africa case.
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3.1 Calibration

To calibrate the model economy to relevant features of the U.S. economy, I start by using the

demographic parameter values characterizing a synthetic steady-state resembling the current U.S.

demographic characteristics. These are the values shown in Table 2.

Some non-demographic parameters are set exogenously. Given a period length of 16 years, a low

state is a rare, but necessarily protracted, event: a disaster in the sense of Barro and Ursua (2008),

who define it as a drop in output, from peak to trough, of 10% or more. They find economies spend,

on average, 12% of time in those depressed states, but their dataset does not include disasters longer

than 16 years. To match this, I set the elements of the aggregate shock’s transition matrix M so

that the model economy almost always spends at most one period in the low state, MLL = 0.001,

and the probability of remaining in the high state is set to MHH = 0.82, so that the model economy

spends 12% of time in the low state.

I set the support of managerial talent to Z = [0, 1] × [0, 1] , and assume that µ is distributed

according to a truncated bivariate log-normal with mean z̄ = (z̄L, z̄H) and variance-covariance matrix

Φ =

(ςz̄L)2 σ

σ (ςz̄H)2


where ς > 0. That is, I take the two skill levels to be correlated at the population level (controlled

by σ) and normalize the two variance terms so that the coefficient of variation of managerial talent

is the same in the two aggregate states. I set the mean producer productivity in the good state to

z̄H = 0.05, a simple normalization.

The income tax rate is set to τ = 0.124, replicating the U.S. social security tax (6.2% on the

employee and 6.2% on the employer), but assuming full incidence on the worker. The production

function coefficients are ν, which regulates the income share of producer rents, and α, which deter-

mines the share of the remaining income accruing to capital. I set the latter to α = 0.4 following

a vast literature that puts the capital income share in the 35% to 45% range, and calibrate the

former below. I set ε = 10−6, a number small enough so that ties for producers between consuming

left-over output and selling it for nothing are broken in favor of the first option. Finally, to discipline

the human capital accumulation, I normalize π2 = 0 and set π3 = 0.28 and π4 = 0.16 so that the
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earnings gains in the model match those implied by the findings of Rupert and Zanella (2015) and

Lagakos, Moll, Porzio, Qian, and Schoellman (2018). A detailed description of this process can be

found in Appendix B.

The remaining parameters are set jointly so as to match selected moments of the steady-state

model economy to their U.S. data counterparts, summarized in Table 3.

Table 3: Calibration

Parameters Targets

β = 0.74 Risk-free rate: 2.25%
σ = 0.66 The risk spread is 4.5%
z̄L = 0.043 Drop in output: 17%
ν = 0.82 Producer rents to output: 10%
ς = 17 Employment share in 50% smallest projects: 5%
γ = 0.75 Share of child spending on parental income 32.3%
e = 0.17 Entry costs 0.75% of GDP
c = 0.07 Security creation costs 0.18% of GDP

I set the discount factor, β, (together with the other parameters) so that the risk-free rate is

approximately 2.25% in yearly terms. This is the average (from 1997 to 2019) of the real prime

corporate bond yield as measured by the ICE BofA AAA US Corporate Index Effective Yield minus

inflation expectations from the Survey of Professional Forecasters.

I set the off-diagonal coefficient of the variance-covariance matrix for skill distribution, σ, such as

to obtain an annual risk spread of 4.5%, the average yield spread between the aforementioned AAA

yield and the ICE BofA Single-B US High Yield Index Effective Yield, my proxy for risky securities.

The mean managerial talent in the low state, z̄L, is set so that the fall in output (peak to trough)

when a bad state occurs is 17%, which is the value I obtain from detrending U.S. output in the Barro

and Ursua (2008) dataset using an exponential trend.

The production function parameter regulating managerial profits, ν, is set so that the ratio of

producer rents to output in the model is 10%, matching the approximation for this moment obtained

by Corbae and Quintin (2016) using US private corporate sector data.

The cross-sectional variance of managerial talent depends on ς, which I set so that the model

economy exhibits a share of employment in the 50% smallest projects of about 5%, as in the U.S.
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establishment data collected by the Census Bureau in its 2017 County Business Patterns Survey.

How much parents care for their progeny depends on parameter γ, which I set so that in the

model economy parents spend the same fraction of their wage income net of taxes as the average

U.S. household. In 2015, the USDA estimated that a middle-class married couple spent 16% of

pre-tax income per child.16 A model household with one child is equivalent to a US household

with two children. Allowing for a modest degree of economies of scale in child rearing, I assume

that raising two children costs 30% of pre-tax income. Finally, the OECD estimates that the tax

wedge in the U.S. for an average married worker with two children was at 18.8% in 2019.17 This

implies that γ is set such that in the model, child consumption to second cohort income ratio is

c1/w = (1−τ)
0.188 0.3 = 0.323.

There are two kinds of costs businesses face in the model economy: entry costs, e, and security

issuing costs, c. Regarding the former, the World Bank’s Doing Business project estimates that the

cost of business start-up procedures as a fraction of GNI per capita in the U.S. in 2018 was 1%. On

the other hand, Djankov, Porta, de Silanes, and Shleifer (2002) estimate these costs to be roughly

half of that, at 0.5% of GDP. Splitting the difference, I set e such that entry costs to GDP in the

model are 0.75% of output.

Active projects also need to pay a cost, c, if they choose to issue both types of securities simul-

taneously. Underwriting fees for corporate debt in the U.S. average roughly 88 basis points (see

Manconi, Neretina, and Renneboog (2018)). At the same time, corporate debt issuance in the U.S.

has averaged roughly $2 trillion from 2016 to 2019, according to Moody’s, implying that underwrit-

ing fees represented roughly 0.09% of GDP.18 I take a conservative view and assume other implicit

security creation costs – whether in terms of governance, disclosure or managing a more complex

capital structure – double these costs to 0.18% of GDP.

16See “Expenditures on children by families” (USDA, 2015). A middle-class couple is defined as having earned
between $59,200 and $107,400 in 2015.

17Note that this differs from the model tax rate τ = 0.124 since in the model, tax revenues are used exclusively for
social security funding.

18See Moody’s Analytics Weekly Market Report, November 14, 2019.
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3.2 Results

Given a set of parameters and a large enough sequence of aggregate shocks, ηt, the model economy

converges to a stochastic steady-state characterized by an invariant distribution.19 The experiment

involves a large number of simulations, s = 1, · · · , S, each one characterized by a different sequence of

aggregate shocks for t = 1, · · · , T periods: {ηst } drawn from the Markov transition matrix M . Each

of these simulations runs for T = 48 model periods. The results shown and cited below correspond

to the averages over a large number of simulations, and as such, approach the mean of each variable’s

invariant distribution, given M is irreducible.

The economy starts out in the original steady-state, characterized by the West-African demo-

graphic parameters, b and sj , shown in Table 2. After spending 16 periods there, a transition ensues

where bt and sj,t linearly change over 8 model periods (128 years) until they match the values cor-

responding to the US demographic characteristics (also shown in the same Table), where it spends

another 24 periods.

As Figure 3 makes clear, the demographic transition results in a large increase in the share of

retirees – from 6 to 26 percent – entirely at the expense of the share of children in the population.

Since early retirees continue to save, this means, first, that the share of the population saving (in

any form) increases from 62 percent to 73 percent, and secondly, that most of this increase skews

towards safe assets: the share of savers that save in the form of riskless assets jumps from 28 to 49

percent.

The transition results in an increase of roughly 36 percent in GDP per capita, as shown in panel

A of figure 4.20 Given that each model period corresponds to 16 years, this translates to a yearly

increase of 0.24 percent in GDP per capita. Having noted this, I want to de-emphasize the absolute

magnitudes because this is, for all its features, a very stylized model. The model does not capture

the demographic transition’s effect on entrepreneurship, for example, something that can have a

deleterious effect on growth (see Liang, Wang, and Lazear (2018) and Aksoy, Basso, Smith, and

19See, for a standard argument, Brock and Mirman (1972).
20To be clear, whether GDP increases or decreases following a demographic transition in a model like this depends

on the nature of the transition. A transition from West-African-like demographic characteristics to US ones moves
people to cohorts that are more productive and save more and therefore increases output. In contrast, a transition from
US-like demographic characteristics to Japanese-like ones would result in a decline in output because of the relatively
larger burden of non-saving retirees.
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Grasl (2019)); it also does not allow for the adoption of labor-substituting automation technologies

that allow economies to reverse a potential labor scarcity trend, as in Acemoglu and Restrepo (2017).

I do want to emphasize the magnitudes relative to a version of the model without the asset

supply channel – which I do in the next section. For now, it will be instructive to understand in

more detail where this increase is coming from: it is the net result of four proximate channels.

The first three channels are direct consequences of the fact that overall saving in the economy

increases. This results, first, in an increase in the average capital each project uses, which can be

gauged in panel B of Figure 4. Second, it also gives rise to in an increase in the share of active

projects by about 40 percent, as shown in panel C of the same figure. The third channel operates

against the net increase in income: the newly-activated projects were infra-marginal in the original

steady-state, that is, they are operated by less skilled managers and, as such, lower overall measured

TFP, as seen in Panel D of Figure 4.

The fourth and final channel is a rather mechanical one, and of less interest for my analysis: the

average worker becomes more productive. Even though the share of working-age population remains

largely unchanged from one steady-state to another at 46 percent, average worker productivity

increases as more workers move to more productive age cohorts. Given the skill evolution calibration

(see details in Appendix section B), this shift results in 2.1% higher worker productivity from one

steady-state to another. It is therefore clear that this is not the main channel at work as, holding all

other factors fixed, this would result in an output increase of 1.0210.6×0.82 − 1 = 0.0103, or about 3

percent of the total increase in output. In Appendix section B.1 I confirm, in a more formal way, the

relative little importance of skill evolution for the increase in output by simulating the demographic

transition assuming no skill change, that is with π2 = π3 = π4 = 0.

The increase in aggregate saving and overall project financing is associated with a reduction in

the cost of capital: both the safe and risky rates fall markedly, as shown in panel A of Figure 5. But

this is where the similarities end regarding the two security types. As panel B shows, saving in the

form of risky securities falls, in contrast to its safe counterpart which increases substantially, more

than compensating for the reduction in the former, and increasing overall saving.

To understand what is behind this difference it helps to look at panel D, that plots saving by

cohort type: the result of individual household-level saving multiplied by the respective cohort share.
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Figure 4: Aggregate outcomes

A: GDP per capita
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B: Average capital per producer
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C: Active projects
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D: Measured TFP
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All cohorts increase their individual-level saving. This is because marginal propensities to save out

of current income increase at the same time that incomes increase.21 That, plus the fact that the

shares of cohorts that save in the form of riskless assets (cohorts 4 and 5) increase in the transition,

explains the rise in riskless saving. Cohort 2’s size, on the other hand, decreases along the transition

(see Figure 3), and it does so proportionately more than the increase in individual-level saving,

which explains why its overall cohort saving falls in panel D. Finally, while the saving of cohort 3

rises in absolute value, this increase is smaller than that of GDP, and so the ratio of saving to GDP,

which is what is plotted in panel D, decreases.

But this is not the end of the story surrounding asset markets; and this is where modeling the

asset supply side becomes important. As the increased saving puts downward pressure on interest

21Marginal propensities to save increase because life expectancy increases following the demographic transition (see
Carvalho, Ferrero, and Nechio (2016) for a similar effect). Importantly, marginal propensities to save out of future
income drop (for the same reason) as expected future incomes increase, but this effect is smaller because of discounting.
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Figure 5: Saving and asset markets
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B: Saving by asset type
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C: Types of project financing
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D: Saving by cohort
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rates, hitherto idle projects find that capital costs become low enough to justify entry. Entering

projects need financing, leading to an increase in asset issuance. Moreover, as the increased demand

for safe securities puts relatively more downward pressure on the safe rate (vis-à-vis the risky rate),

producers shift financing sources more towards safe securities issuance. In particular, a large mass

of producers starts to issue safe securities in addition to risky ones (see panel C of Figure 5),

securitizing their risky cash-flows, but not so much so as to outstrip the increased demand for safe

assets and drive interest rates up. In contrast, risky rates go down even though the demand for risky

securities falls. This is the result of the fact that risky asset issuance contracts even more, as more

projects substitute away from risky into safe issuance. Absent securitization costs, safe issuance

would be preferred by producers since households are willing to pay more for it. With strictly

positive securitization costs, as the demand for safe assets increases, the risk premium widens (in

this case by 50 basis points). As a result, some of the producers that were issuing risky assets in

exclusive realize enough capital cost savings by starting to issue safe assets (in addition to risky
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ones) to cover the additional securitization cost.

One of the main findings of this paper is that this safe asset issuance push-back (that characterizes

a model with an asset supply channel) dampens the fall in interest rates in a quantitatively important

way. Therefore, models that omit this channel risk overestimating the impact of the demographic

transition. I show this formally in the next section.

3.3 A representative firm, one asset, counterfactual

As established in the previous section, projects react to the transition-induced saving glut by adjust-

ing their financing policies and/or entering decisions. Since this endogenous reaction gives rise to

an increase in security issuance, counterfactually, if financing policies and entry decisions were fixed,

interest rates would fall even more, and the impact of the transition on capital and output would

be larger. Since this is the central mechanism this article highlights, it is important to ascertain its

magnitude. Moreover, if it is the case that this channel turns out to be important, then this calls into

question the quantitative predictions of representative firm models of the demographic transition.

To investigate this, I simulate the same demographic transition, but under the assumption that

there is a representative firm that requires financing and issues risky debt only. To be clear, although

this is the more standard way of modeling the production side, I refer to the model developed in the

previous section (with heterogeneous producers) as the benchmark.

I follow the same setup and equilibrium concept and, in the interest of brevity, I only show the

household and producer problems, highlighting the differences. I relax the assumption that older

cohorts are infinitely risk-averse and keep the same risk-neutral period log preferences throughout

the household’s lifetime. Formally, households now solve:

maxEt

{
γ (1 + bt) log c1,t(ηt) + log c2,t(ηt)+s2,tβ log {Et (c3,t+1(ηt+1)|ηt)}+ s3,t+1β

2 log {Et (c4,t+2(ηt+2)|ηt+1)}

+s4,t+2β
3 log {Et (c5,t+3(ηt+3)|ηt+2)}+ s5,t+3β

4 log {Et (c6,t+4(ηt+4)|ηt+3)}

}
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s.t. c1,t(ηt) + c2,t(ηt) +

∫
Zt

a2,t(z, ηt)dµ ≤ (1− τ)(1 + π2)wt + b2,t,

c3,t+1(ηt+1) +

∫
Zt

a3,t+1(z, ηt+1)dµ ≤ (1− τ)(1 + π3)wt+1 + b3,t+1 +

∫
Zt

a2,t(z, ηt)Rt+1(z)dµ,

c4,t+2(ηt+2) +

∫
Zt

a4,t+2(z, ηt+2)dµ ≤ (1− τ)(1 + π4)wt+2 + b4,t+2 +

∫
Zt

a3,t+1(z, ηt+1)Rt+2(z)dµ,

c5,t+3(ηt+3) +

∫
Zt

a5,t+3(z, ηt+3)dµ ≤ pt+3 + b5,t+3 +

∫
Zt

a4,t+2(z, ηt+2)Rt+3(z)dµ,

c6,t+4(ηt+4) ≤ pt+4 +

∫
Zt

a5,t+3(z, ηt+2)Rt+4(z)dµ,

c1,t, c2,t, c3,t+1, c4,t+2, c5,t+3, c6,t+4 > 0,

where the incidental bequests are given by

b2,t =
sh2,t−1

sh2,t

1− s2,t−1

1 + gt

∫
Zt

a2,t−1(z)Rt(z)dµ,

b3,t+1 =
sh3,t

sh3,t+1

1− s3,t

1 + gt+1

∫
Zt

a3,t(z)Rt+1(z)dµ,

b4,t+2 =
sh4,t+1

sh4,t+2

1− s4,t+1

1 + gt+2

∫
Zt

a4,t+1(z, ηt+1)Rt+2(z)dµ,

b5,t+3 =
sh5,t+2

sh5,t+3

1− s5,t+2

1 + gt+3

∫
Zt

a5,t+2(z, ηt+2)Rt+3(z)dµ,

and the social security benefits are given by:

pt+3 =

∫
Zt+2

tt+2(z, ηt+2)Rt+3(z)dµ

(1 + gt+3)
∑6

j=5 shj,t+3

,

pt+4 =

∫
Zt+3

tt+3(z, ηt+3)Rt+4(z)dµ

(1 + gt+4)
∑6

j=5 shj,t+4

,

where tt(z, η), the amounts invested by the social security fund across producers must sum up to
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the total tax revenues22:

∫
Zt+2

tt+2(z, ηt+2)dµ = τwt+2

4∑
j=2

shj,t+2(1 + πj),

∫
Zt+3

tt+3(z, ηt+3)dµ = τwt+3

4∑
j=2

shj,t+3(1 + πj).

I assume the same expectation formation mechanism as in the benchmark economy. As a result,

note that given expectations for future wages and interest rates, the household problem is exactly the

same. In particular, marginal propensities to consume and save are the same as in the benchmark

economy, and largely the result of changes in demographic characteristics: survival probabilities and

population growth rates.

Once the representative firm has paid the entry cost, the output produced when Kt units of

capital and Nt units of labor are used is given by the following schedule:

Y (Kt, Nt; z(ηt)) = z(ηt)K
α
t N

1−α
t ,

where η ∈ {L,H}, 0 < α < 1 and 0 < zL < zH < 1. After the aggregate shock is realized and

conditional on paying the entry cost and on using capital Kt, the representative producer takes the

wage rate wt as given and chooses its labor input by solving:

Π(Kt, wt; z(ηt)) ≡ max
Nt>0

Y (Kt, Nt; z(ηt))− wtNt.

Like in the benchmark economy, the representative producer cannot self-finance and needs

to borrow from households. To this end each project issues state-contingent securities that pay

(x(L), x(H)) ≥ 0 in each state of the world, chooses capital Kt, and takes the households willingness

to pay for these securities, qt(xt(L), xt(H)) as given, such as to solve:

22Although I technically no longer need tax revenues to be invested for one period before being disbursed as social
security benefits, I keep this for comparability purposes with the benchmark
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cy,t + εE (co,t+1(η)|ηt−1)

subject to

cy,t ≤ qt (xt(L), xt(H))−Kt −Nte,

co,t+1(L) ≤ Π(Kt, wt(L); zL)− xt(L),

co,t+1(H) ≤ Π(Kt, wt(H); zH)− xt(H),

where the only difference relative to the benchmark is the fact that producers issue at most one

security type and therefore do not pay security creation costs.

3.3.1 A demographic transition

I simulate the same demographic transition as before, subject only to the changes highlighted in the

previous section. The model’s calibration is much simpler given the reduced number of parameters.

The discipline is the same though, as the values of the remaining parameters are chose to match

the targets in Table 3. There is one exception: because the modified model only features one

interest rate, I set β such that the capital-output ratio in the final steady-state is the same as in the

benchmark economy.23

The comparison between the two economies is made plain in Figure 6. Even though the driving

force behind the transition is the same, capital used in production (and consequently household

saving) is much larger (panel B) and the interest rate lower (panel C) than in the benchmark

economy. The main reason for the difference should now be apparent. In the representative firm

economy, the schedule for the supply of funds increases (a direct consequence of the demographic

transition) and slides down along a static capital demand schedule, lowering the interest rate. In

contrast, in the benchmark economy, this downward pressure on interest rates coming from the

increase in the supply of funds is partially counteracted by a change in financing policies at the

project level and by the activation of further projects (detailed in the previous section) that shift

23I also simulated a version where I set β such that the interest rate in the final steady-state is equal to the (asset
weighted) average of the two interest rates in the final steady-state of the benchmark model and the results differ very
little.
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Figure 6: Comparison to representative firm, one asset, economy
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B: Capital per capita
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C: Interest rates
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the capital demand schedule up, resulting in a smaller interest rate decrease.

These results imply that the effect of the demographic transition on output, the demographic

dividend, can be severely overestimated by standard representative firm models, as panel A in Figure

6 makes clear: an output increase of 64 percent versus 36 percent in the benchmark. In yearly terms

this is a growth rate of 0.39 percent – compared to 0.24 percent in the benchmark, making for

an overestimation larger than 50 percent. As we previously discussed, part of the reason for the

difference is the endogenous entry of new projects. Unlike what happens in the representative

firm economy where by definition TFP is constant, in the benchmark economy the average project

productivity goes down, as shown in panel D of Figure 6. Prior to the transition, these new entrants

were infra-marginal projects who start to operate once interest rates start dropping, making their

production plans profitable enough to cover the entry cost.

In comparing the representative firm economy and the benchmark, it is instructive to separate the

changes caused by the introduction of heterogeneous producers – which may affect asset issuance
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through entering and exiting – from those that arise from the introduction of an extra (riskless)

asset – which change the asset issuance mix projects use to finance production. In order to do

this decomposition I simulate another version of the economy where producers are heterogeneous in

the same way as in the benchmark, but there is just one (state-contingent) asset and all household

cohorts have the same preferences, like in the representative firm economy. In this intermediate

economy projects can entry and exit but cannot finance themselves by issuing different assets.24

Figure 7: Decomposing the difference
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C: Interest rates
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The results in Figure 7 make clear that the bulk of the differences are coming about because of the

skill heterogeneity assumption, but that the ability to switch financing sources plays a non-negligible

role. The latter accounts for about one third of the difference in the interest rate decline between

the benchmark economy and the representative firm economy (panel B), and roughly one fifth of the

24This economy’s parameters are calibrated so as to match the targets in Table 3 except for the interest rate targets.
Instead, the discount factor β is calibrated so that the capital-output ratio in the final-steady-state is the same as in
the benchmark economy (which is also the same as in the representative firm economy, for that matter).
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difference in the growth of capital (panel C). Differences in measured TFP are rooted entirely in the

heterogeneity assumption (panel D). As explained above, projects that were unprofitable before the

transition, find it worthwhile to pay the entry cost and operate once interest rates drop. From the

original steady-state of the benchmark economy to the final one, the measure of active projects grows

by more than a third. These projects are, on average, less productive than the incumbent operating

projects, thus lowering measured TFP. Figure 8 shows this process: the darker density corresponds

to projects that were active in the initial-steady-state, while the lighter density corresponds to the

additional projects that are also active in the final steady-state.

Figure 8: Growth in active projects

Finally, the benchmark also differs from the representative firm economy in the sense that is-

suance is costly when both assets are issued at the same time. I also simulated a demographic

transition under the assumption that these issuance costs are zero. When this is the case, all

projects issue both asset types, and while such an economy is slightly different from the benchmark

economy in levels, the changes along the transition show no significant difference.25

25While I omitted this experiment’s results for the sake of brevity, they are available on request.
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3.4 Discussion

In the benchmark economy projects can issue both contingent and non-contingent bonds. One

objection that may arise in mapping from model to data is that developing economies are, for

the most part, characterized by inchoate capital markets where the vast majority of firms do not

issue corporate bonds, let alone highly-rated ones. Here, it is important to note that for the main

model mechanism to work, it need not be the case that asset issuance is done by producers. In

particular, the model would be isomorphic to one where, because of information asymmetries between

households and producers, fully informed intermediaries with market power would take household

savings and use them to buy a pool of projects, driving entrepreneur profit to zero (their outside cost).

These intermediaries would then offer households a menu of state-contingent and non-contingent

securities, just like in the current version of the model. The only difference would be that what

we now call producer profits would constitute instead financial sector profits. In this case, non-

contingent assets would simply be bank deposits, while the contingent securities would be equity in

banks. Alternatively still, intermediaries would not even have to acquire projects, and they could

simply serve as fully competitive pass-through entities (making zero profits) between households

and projects. In this case, the savings of the older cohorts would be akin to bank loans, while the

savings of the younger cohorts would be akin to equity. In any case, the alternative types of financing

described here, would be compatible with the existing level of financial sophistication in developing

economies, while not changing any of the results.

Another issue that is worth discussing is the fact that for a model that emphasizes safe asset

supply, short-term government securities – the securities that epitomize the safe asset class, at least in

developed economies – are conspicuously absent. The implication being that the share of household

savings that are tied up in government securities would not be available for business financing, and

therefore the model could be overestimating the amount of safe business financing. In defense of

the model, such a simplification – mapping savings in the form of government securities in the data,

to savings used as productive capital in the model – is a common one in macro models for a good

reason: it is cumbersome to model simultaneous holdings of different securities with a common

expected return absent other security characteristics like liquidity, for example. Moreover, to the

extent that this type of government funding eventually ends up financing downstream projects much
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in the same way, then little is lost in the abstraction.

4 Conclusion

The economies of West Africa are home to some of the youngest populations in the world. Over

the next decades, as their demographic transition process continues, the share of working-age people

is estimated to grow, giving rise to important macroeconomic changes. The model in this study is

designed to capture some of these changes like the effects coming from age-specific labor productivity,

those coming from changes in household saving rates and portfolio changes, as well as changes in

asset issuance. The model predicts that the effect of the demographic transition on the output per

capita of such developing economies is in the order of a quarter of a percentage point a year.

Asset markets are a key transmission mechanism to understand the macroeconomic impact of

demographic changes. As such, it stands to reason that the quantitative evaluation of such impact

should depend on the modeling assumptions surrounding said asset markets. I argue that omitting

(i) producer heterogeneity with respect to productivity in different states of the world and (ii)

producers’ ability to finance themselves by issuing different types of assets, gives rise to quantitatively

important differences when evaluating a demographic transition’s impact. In particular, such models

overestimate the impact on output and the size of the accompanying interest rate reduction.

While the analysis in this paper is done in the context of an economy that starts out as relatively

young, the same should be true of industrialized economies that have been debating the economic

consequences of their aging population. Economies like Japan, Italy, or Portugal, for example, exhibit

total fertility rates in the order of 1.3-1.4 births per woman, well below replacement levels. True,

matters are not as extreme in other developed economies, but even there, the concern around an

aging population has generated a burgeoning literature investigating the impact of demographics on

interest rates in industrialized economies.26 In future work, I plan to understand whether introducing

a business asset supply channel significantly changes the models’ predictions regarding predicted

decreases in interest rates in advanced economies.

26See, for examples, Lisack, Sajedi, and Thwaites (2017) and Carvalho, Ferrero, and Nechio (2016).
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A Data

The population data are from the United Nation’s World Population Prospects. The data were
obtained February 27, 2020 from https://population.un.org/wpp/Download/Standard/Population/.
In particular, I use File POP/7-1 that contains total population (both sexes combined) by five-year
age groups, at the region, subregion and country levels from 1950-2100. From 2020 on, the predictions
come in different variants, and I use the no-migration variant, as the model is not built to handle
migration.

For each region, I have a panel with the population in each age group 0-4, 5-9, ..., 100+ every
five years from 1950 to 2100. I need to regroup these 5-year cohorts into the model’s 16-year cohorts.
I proceed in 3 steps:

1. Split each 5-year cohort’s population into individual years of age. Instead of assuming a uniform
distribution within cohorts, I assume that population density by age within each cohort moves
linearly with the same gradient as two consecutive 5-year population cohorts. So, just for
illustrative purposes, if cohort 0-4 has 100 people and cohort 5-9 has 90 people, I assume that
the age distribution within the first cohort is such that population declines by 10 percent each
year, and so I have from ages 0 to 4: 24.42, 21.98, 19.78, 17.80, and 16.02. This leaves me with
a panel of 31 – five year periods (from 1950 to 2100) – by 101 – ages (from 0 to 100+).

2. I obtain population by age estimates for all years, not just every five years, by assuming
linearity in the evolution of each age cohort. So if in year t there are 100 people age 10 and in
year t + 5 there are 110 people aged 10, this means there will be 102 people aged 10 in year
t + 1, 104 people aged 10 in year t + 2, etc. This leaves me with a panel of 151 years by 101
ages.

3. I regroup the different ages into 6, 16-year cohorts: 0-15, 16-31, 32-47, 48-63, 64-79, and 80+,
where the last cohort is special in that it contains a fraction of people older than 95, albeit
not a large one. Finally, since the model period lasts 16 years, starting in 2020 I take a cross
section of these cohorts every 16 years.

Table 4: West-Africa model-compatible population (thousands)

Years/Cohorts 0-15 16-31 32-47 48-63 64-79 80+

2020 182,527 110,789 63,979 32,082 11,492 993
2036 245,295 173,211 102,820 55,514 19,884 1,775
2052 303,184 236,461 163,528 91,564 36,185 3,606
2068 344,161 295,116 226,094 147,940 62,440 7,472
2084 368,312 337,088 284,545 207,157 10,4391 14,811
2100 373,926 362,254 326,912 263,555 151,251 27,868

I take West-Africa as a benchmark for the initial model steady-state. This includes Benin,
Burkina-Faso, Cape Verde, Ivory Coast, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali,
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Figure 9: Initial steady-state (West-Africa)
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Mauritania, Niger, Nigeria, Senegal, Sierra Leone, and Togo. The model-compatible cohort popula-
tions are shown in Table 4.

I use the changes from 2020 to 2036 to compute model-compatible population growth and survival
rates that I can then use to create a synthetic steady-state. The population growth rate in the model’s
steady-state is the growth rate in the younger cohort’s size from one period to another, which in
this case is n = 245,300

182,530 − 1 = 0.3439, or 1.86% in yearly terms. Letting Nj,t denote the population

of cohort j = 1, · · · , 5 in period t, survival probabilities for cohort j are given by
Nj+1,t+1

Nj,t
, which for

t = 2020 are s = (0.9490, 0.9281, 0.8677, 0.6198, 0.1545).
Next, I compute the steady-state cohort shares that these parameters generate. I do this by

simulation, and start by setting population cohort shares to an arbitrary level: P (j, t) = 1/6, and
compute the shares recursively for a large enough number of periods T according to:

P (1, t+ 1) = (1 + n)P (1, t)

P (j + 1, t+ 1) = sjP (j, t) for j = 1, . . . , 5.

As Figure 9 shows, for the West Africa case, the convergence in shares is very quickly. The
resulting steady-state shares are used in the model for the initial steady-state and show up in Table
2.
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B Lifetime earnings profiles

I normalize the human capital of young adults to π2 = 1 implying their wage earnings are w and
assume that human capital accumulation throughout an agent’s lifetime evolves exogenously and
in such a way that prime-aged wages are π3w and middle-aged wages are π4w. I then calibrate π3

and π4 so that the earnings gains in the model match the earnings gains implied by the findings of
Rupert and Zanella (2015) and Lagakos, Moll, Porzio, Qian, and Schoellman (2018). Here I provide
some more details about this calibration.

Lagakos, Moll, Porzio, Qian, and Schoellman (2018) estimate experience-wage profiles for a set
of rich and poor countries. They are able to disentangle experience, time, and cohort effects by
assuming that there should be no experience effects on wages near the end of the life-cycle when the
incentives to invest in human capital, or look for better jobs, are much smaller than earlier in life.
Under the assumption that there are no experience effects in the last 10 years of potential experience
and no depreciation, they report (see their Table 4, panel A) that wage gains for the 5-9 experience
group are 40.3% larger than for the 0-4 group, while gains are 79.3% for the 20-24 group and 80.8%
for the 35-39 group. These results are for an average of 4 rich countries (United States, Canada,
Germany and the United Kingdom). I will take them to reflect the U.S economy, as the data in
Lagakos, Moll, Porzio, Qian, and Schoellman (2018), suggest (see their Figure 5, for example) that
the U.S. is close to the average.

Figure 10: Life-cycle wages and earnings
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I use a piecewise linear function of weakly increasing wages to match these 3 relative differences.
This is shown in panel A of Figure 10. Since the model does not have an extensive margin (workers
supply labor inelastically), I map model’s labor compensation to earnings. In order to convert
the above wage profile to earnings I use the results in Rupert and Zanella (2015). They find that
hours worked do not vary with age up until age 50 (in a statistical sense). This means that life-cycle
earnings track life-cycle wages up until age 50. From then on, workers significantly (and statistically)
reduce their working hours in anticipation of retirement. Figure 6 in Rupert and Zanella (2015)
suggests that yearly hours decline from about 2200 to 1700. I assume this decline occurs linearly
for the last 15 years of a worker’s career. This results in the earnings pattern shown in panel B of
Figure 10.
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Using this earnings profile I compute the average earnings for each of the three 16-year periods
of a worker’s career and find that prime-aged workers (16-31 years of experience) earn 28% more
than young workers (0-15 years of experience), while middle aged workers (32-47 years of experience)
earn 16% more than young workers. I therefore set π3 = 0.28 and π4 = 0.16.

B.1 No lifetime worker productivity changes

To gauge the importance of modeling lifetime skill changes, I rerun the demographic transition
assuming that workers are equally productivity throughout their lifetime. In terms of the model’s
parameters, this simply means setting π3 = π4 = 1. As Figure 11 shows, there are hardly any
differences in output per capita during the transition and the steady-state difference amounts to less
than ten percent.

Figure 11: Robustness: no lifetime worker productivity changes
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C The household problem

In this section I solve the household problem and derive expressions for cohort-specific saving: equa-
tions (C.6).

These expressions are contingent on a set of expected variables whose calculation I make clear
in the next section.

maxEt

{
γ (1 + bt) log c1,t(ηt)+ log c2,t(ηt) + s2,tβ log {Et (c3,t+1(ηt+1)|ηt)}+ s3,t+1β

2 log {Et+1 (c4,t+2(ηt+2)|ηt+1)}

+s4,t+2β
3 log {min (c5,t+3(L), c5,t+3(H))}+ s5,t+3β

4 log {min (c6,t+4(L), c6,t+4(H))}

}

s.t. c1,t(ηt) + c2,t(ηt) +

∫
Zt

a2,t(z, ηt)dµ ≤ (1− τ)wt + b2,t,

c3,t+1(ηt+1) +

∫
Zt

a3,t+1(z, ηt+1)dµ ≤ (1− τ)(1 + π3)wt+1 + b3,t+1 +

∫
Zt

a2,t(z, ηt)R
R
t+1(z)dµ,

c4,t+2(ηt+2) +

∫
Zt

a4,t+2(z, ηt+2)dµ ≤ (1− τ)(1 + π4)wt+2 + b4,t+2 +

∫
Zt

a3,t+1(z, ηt+1)RR
t+2(z)dµ,

c5,t+3(ηt+3) +

∫
Zt

a5,t+3(z, ηt+3)dµ ≤ b5,t+3 + pt+3 +

∫
Zt

a4,t+2(z, ηt+2)RS
t+3(z)dµ,

c6,t+4(ηt+4) ≤ pt+4 +

∫
Zt

a5,t+3(z, ηt+3)RS
t+4(z)dµ,

c1,t, c2,t, c3,t+1, c4,t+2, c5,t+3, c6,t+4 > 0,

where the incidental bequests are given by

b2,t =
sh2,t−1

sh2,t

1− s2,t−1

1 + gt

∫
Zt

a2,t−1(z)RRt (z)dµ,

b3,t+1 =
sh3,t

sh3,t+1

1− s3,t

1 + gt+1

∫
Zt

a3,t(z)R
R
t+1(z)dµ,

b4,t+2 =
sh4,t+1

sh4,t+2

1− s4,t+1

1 + gt+2

∫
Zt

a4,t+1(z, ηt+1)RSt+2(z)dµ,

b5,t+3 =
sh5,t+2

sh5,t+3

1− s5,t+2

1 + gt+3

∫
Zt

a5,t+2(z, ηt+2)RSt+3(z)dµ,

and the social security benefits are given by:

pt+3 =

∫
Zt

tt+2(z, ηt+2)RSt+3(z)dµ

(1 + gt+3)
∑6

j=5 shj,t+3

,

pt+4 =

∫
Zt

tt+3(z, ηt+3)RSt+4(z)dµ

(1 + gt+4)
∑6

j=5 shj,t+4
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where tt(z, η), the amounts invested by the social security fund across producers that issue safe
securities must sum up to the total tax revenues:∫

Zt

tt+2(z, ηt+2)dµ = τwt+2

4∑
j=2

shj,t+2(1 + πj),

∫
Zt

tt+3(z, ηt+3)dµ = τwt+3

4∑
j=2

shj,t+3(1 + πj).

In what follows I will abuse notation and introduce some equilibrium results in order to make the
notation lighter. In particular, let RSt = RSt (z) and RRt = RRt (z) for all active projects z ∈ Z denote,

respectively, the equilibrium safe and risky rates, and let aj,t =

∫
Zt

aj,t(z)dµ denote total savings of

cohort j. I will also write c5,t+3 = min (c5,t+3(L), c5,t+3(H)), c6,t+4 = min (c6,t+4(L), c6,t+4(H)) for
the, riskless, consumption of infinitely risk-averse cohorts.

The first-order conditions are

c1,t

c2,t
= γ (1 + bt) (C.1)

Etc3,t+1

c2,t
= βs2,tEtR

R
t+1 (C.2)

Etc4,t+2

Etc3,t+1
= β

s3,t+1

s2,t
EtR

R
t+2 (C.3)

Etc5,t+3

Etc4,t+2
= β

s4,t+2

s3,t+1
EtR

S
t+3 (C.4)

Etc6,t+4

Etc5,t+3

= β
s5,t+3

s4,t+2
EtR

S
t+4, (C.5)

for all t and for all aggregate states ηt ∈ {L,H} .
Note that the reason we can write the FOC (C.3) as

Etc3,t+1

c2,t
= βs2,tEtR

R
t+1, instead of the usual

1
c2,t

= βs2,tEt

(
RR

t+1

c3,t+1

)
, is that the utility argument is Etc3,t+1 and not c3,t+1. This means the FOC is

1
c2,t

= βs2,tEt

(
RR

t+1

Etc3,t+1

)
, which means that conditional on time t information, Etc3,t+1 is a constant

and can, therefore, be brought out of the expectation: Et

(
RR

t+1

Etc3,t+1

)
= 1

Etc3,t+1
EtR

R
t+1.

Putting ourselves in the perspective of a household in the last period of its life: c6,t+4 = pt+4 +
a5,t+3R

S
t+4, for all ηt+4. Abusing notation and using the equilibrium result that c6,t+4 = c6,t+4, and

c5,t+3 = c5,t+3, we can use the analogous of FOC (C.5) in period t+ 3 to substitute out c6,t+4:

Et+3pt+4 + a5,t+3Et+3R
S
t+4

c5,t+3
= β

s5,t+3

s4,t+2
Et+3R

S
t+4.

Further substituting out c5,t+3 = pt+3 + a4,t+2R
S
t+3 + bt+3− a5,t+3 from the early retirees budget

constraint:
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Et+3pt+4 + a5,t+3Et+3R
S
t+4 = β

s5,t+3

s4,t+2
Et+3R

S
t+4

(
pt+3 + a4,t+2R

S
t+3 + bt+3 − a5,t+3

)
.

Solving for the saving of the early-retiree cohort:

a5,t+3 =
β
s5,t+3

s4,t+2

(
pt+3 + b5,t+3 + a4,t+2R

S
t+3

)
− Et+3pt+4

Et+3RS
t+4

1 + β
s5,t+3

s4,t+2

. (C.6)

Letting d5,t+3 ≡ β s5,t+3

s4,t+2
, note how optimal savings are a fraction

d5,t+3

1+d5,t+3
of current income minus

discounted future income.
We can now replace this optimal solution back in the early retirees budget constraint and solve

for consumption:

c5,t+3 = pt+3 + a4,t+2R
S
t+3 + bt+3 −

d5,t+3

1 + d5,t+3

(
pt+3 + b5,t+3 + a4,t+2R

S
t+3

)
−

Et+3pt+4

Et+3RS
t+4

1 + d5,t+3

c5,t+3 =

(
1

1 + d5,t+3

)(
pt+3 +

Et+3pt+4

Et+3RSt+4

+ a4,t+2R
S
t+3 + b5,t+3

)
,

Replacing the expression for the optimal c5,t+3 we just found, as well as the expression for c4,t+2

from the pre-retiree cohort’s budget constraint, into the analogue of FOC (C.4) for the pre-retirees
in period t+ 2 we get:

Et+2

{(
1

1 + β
s5,t+3

s4,t+2

)(
pt+3

Et+2RSt+3

+
Et+3pt+4

Et+2RSt+3Et+3RSt+4

+
a4,t+2R

S
t+3

Et+2RSt+3

+
b5,t+3

Et+2RSt+3

)}
= β

s4,t+2

s3,t+1

(
(1− τ)(1 + π4)wt+2 + b4,t+2 + a3,t+1R

R
t+2 − a4,t+2

)
Using the law of iterated expectations and recalling that households know the full evolution of

the survival probabilities, sj,t, which can, therefore, be brough out of the expectation, we get:

(
1

1 + β
s5,t+3

s4,t+2

+ β
s4,t+2

s3,t+1

)
a4,t+2 =β

s4,t+2

s3,t+1

(
(1− τ)(1 + π4)wt+2 + b4,t+2 + a3,t+1R

R
t+2

)
− 1

1 + β
s5,t+3

s4,t+2

(
Et+2pt+3

Et+2RSt+3

+
Et+2pt+4

Et+2RSt+3Et+2RSt+4

+
Et+2b5,t+3

Et+2RSt+3

)
Letting d4,t+2 ≡ β s4,t+2

s3,t+1
+ β2 s5,t+3

s3,t+1
we get:

a4,t+2 =
d4,t+2

1 + d4,t+2

(
(1− τ)(1 + π4)wt+2 + b4,t+2 + a3,t+1R

R
t+2

)
− 1

1 + d4,t+2

(
Et+2pt+3

Et+2RSt+3

+
Et+2pt+4

Et+2RSt+3Et+2RSt+4

+
Et+2b5,t+3

Et+2RSt+3

)
(C.7)
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We can now get consumption c4,t+2 from the pre-retiree cohort’s budget constraint:

c4,t+2 =

(
1− d4,t+2

1 + d4,t+2

)(
(1− τ)(1 + π4)wt+2 + b4,t+2 + a3,t+1R

R
t+2

)
+

Et+2pt+3

Et+2RS
t+3

+ Et+2pt+4

Et+2RS
t+3Et+2RS

t+4
+

Et+2b5,t+3

Et+2RS
t+3

1 + d4,t+2

c4,t+2 =
(1− τ)(1 + π4)wt+2 + b4,t+2 + a3,t+1R

R
t+2 + Et+2pt+3

Et+2RS
t+3

+ Et+2pt+4

Et+2RS
t+3Et+2RS

t+4
+

Et+2b5,t+3

Et+2RS
t+3

1 + d4,t+2

Continuing to go backwards, we now stand in period t+1 with a household that is in their second
period of work, with information set It+1. Replacing the expression for the optimal c4,t+2 we just
found, as well as the expression for c3,t+1 from the prime-age cohort’s budget constraint, into FOC
(C.3) we get:

Et+1

{
(1− τ)(1 + π4)wt+2 + b4,t+2 + a3,t+1R

R
t+2 + pt+3

RS
t+3

+ pt+4

RS
t+3R

S
t+4

+
b5,t+3

RS
t+3

1 + d4,t+2

}
=β

s3,t+1

s2,t
Et+1R

R
t+2

[
(1− τ)(1 + π3)wt+1 + b3,t+1 + a2,tR

R
t+1 − a3,t+1

]

(1− τ)(1 + π4)Et+1wt+2

Et+1RR
t+2

+
Et+1b4,t+2

Et+1RR
t+2

+ a3,t+1 + Et+1pt+3

Et+1RR
t+2Et+1RS

t+3
+ Et+1pt+4

Et+1RR
t+2Et+1RS

t+3Et+1RS
t+4

+
Et+1b5,t+3

Et+1RR
t+2Et+1RS

t+3

1 + d4,t+2

=β
s3,t+1

s2,t

[
(1− τ)(1 + π3)wt+1 + b3,t+1 + a2,tR

R
t+1 − a3,t+1

]
Solving for a3,t+1

a3,t+1

(
1

1 + d4,t+2
+ β

s3,t+1

s2,t

)
= β

s3,t+1

s2,t

[
(1− τ)(1 + π3)wt+1 + b3,t+1 + a2,tR

R
t+1

]
−

(1− τ)(1 + π4)Et+1wt+2

Et+1RR
t+2

+
Et+1b4,t+2

Et+1RR
t+2

+ a3,t+1 + Et+1pt+3

Et+1RR
t+2Et+1RS

t+3
+ Et+1pt+4

Et+1RR
t+2Et+1RS

t+3Et+1RS
t+4

+
Et+1b5,t+3

Et+1RR
t+2Et+1RS

t+3

1 + d4,t+2

Note that 1
1+d4,t+2

+ β
s3,t+1

s2,t
= 1

1+β
s4,t+2
s3,t+1

+β2
s5,t+3
s3,t+1

+ β
s3,t+1

s2,t
=

β
s3,t+1
s2,t

+β2 s4,t+2
s2,t

+β3 s5,t+3
s2,t

1+β
s4,t+2
s3,t+1

+β2
s5,t+3
s3,t+1

, and there-

fore, letting d3,t+1 ≡ β s3,t+1

s2,t
+ β2 s4,t+2

s2,t
+ β3 s5,t+3

s2,t

a3,t+1 =
d3,t+1

1 + d3,t+1

[
(1− τ)(1 + π3)wt+1 + b3,t+1 + a2,tR

R
t+1

]
(C.8)

−
(1− τ)(1 + π4)Et+1wt+2

Et+1RR
t+2

+
Et+1b4,t+2

Et+1RR
t+2

+
Et+1b5,t+3

Et+1RR
t+2Et+1RS

t+3
+ Et+1pt+3

Et+1RR
t+2Et+1RS

t+3
+ Et+1pt+4

Et+1RR
t+2Et+1RS

t+3Et+1RS
t+4

1 + d3,t+1
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We can now get consumption c3,t+1 from the prime-aged cohort’s budget constraint:

c3,t+1 =

(
1

1 + d3,t+1

)(
(1− τ)(1 + π3)wt+1 + b3,t+1 + a2,tR

R
t+1 + (1− τ)(1 + π4)

Et+1wt+2

Et+1RRt+2

+
Et+1b4,t+2

Et+1RRt+2

+
Et+1b5,t+3

Et+1RRt+2Et+1RSt+3

+
Et+1pt+3

Et+1RRt+2Et+1RSt+3

+
Et+1pt+4

Et+1RRt+2Et+1RSt+3Et+1RSt+4

)

Continuing to go backwards, we now stand in period t with a household that is in their second
period of work, with information set It. Replacing the expression for the optimal c3,t+1 we just
found into FOC (C.2) we get:(

1

βs2,t (1 + d3,t+1)

)(
(1− τ)(1 + π3)

Etwt+1

EtRRt+1

+
Etb3,t+1

EtRRt+1

+ a2,t + (1− τ)(1 + π4)
Etwt+2

EtRRt+1EtR
R
t+2

+
Etpt+3

EtRRt+1EtR
R
t+2EtR

S
t+3

+
Etpt+4

EtRRt+1EtR
R
t+2EtR

S
t+3EtR

S
t+4

+
Etb4,t+2

EtRRt+1EtR
R
t+2

+
Etb5,t+3

EtRRt+1EtR
R
t+2EtR

S
t+3

)
= c2,t

From the FOC C.1: c1,t = γ(1 + bt)c2,t. Replacing this in the young adult cohort budget
constraint: a2,t = (1− τ)wt + b2,t − (1 + γ(1 + bt))c2,t. This gives us:

a2,t = (1− τ)wt + b2,t −

[(
1 + γ(1 + bt)

βs2,t (1 + d3,t+1)

)(
(1− τ)(1 + π3)

Etwt+1

EtRR
t+1

+ a2,t + (1− τ)(1 + π4)
Etwt+2

EtRR
t+1EtRR

t+2

+
Etpt+3

EtRR
t+1EtRR

t+2EtRS
t+3

+
Etpt+4

EtRR
t+1EtRR

t+2EtRS
t+3EtRS

t+4

+
Etb3,t+1

EtRR
t+1

+
Etb4,t+2

EtRR
t+1EtRR

t+2

+
Etb5,t+3

EtRR
t+1EtRR

t+2EtRS
t+3

)]

Letting d2,t ≡ βs2,t (1 + d3,t+1) = βs2,t + β2s3,t+1 + β3s4,t+2 + β4s5,t+3 and solving for a2,t, we
get:

a2,t =
d2,t [(1− τ)wt + b2,t]

1 + d2,t + γ(1 + bt)
−

(1− τ)(1 + π3)Etwt+1

EtRR
t+1

+ (1− τ)(1 + π4) Etwt+2

EtRR
t+1EtRR

t+2

1 + d2,t + γ(1 + bt)
(C.9)

−
Etpt+3

EtRR
t+1EtRR

t+2EtRS
t+3

+ Etpt+4

EtRR
t+1EtRR

t+2EtRS
t+3EtRS

t+4
+

Etb3,t+1

EtRR
t+1

+
Etb4,t+2

EtRR
t+1EtRR

t+2
+

Etb5,t+3

EtRR
t+1EtRR

t+2EtRS
t+3

1 + d2,t + γ(1 + bt)

Equipped with the expressions for cohort saving we can use these in solving for expectation
formation.
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D Expectations formation

At every period t, I solve for saving decisions a2,t, a3,t, a4,t, and a5,t using equations (C.6)-(C.9)
above. To do this I need instances for the following expectations: Etwt+1, EtR

R
t+1, EtR

S
t+1, Etpt+1,

Etwt+2, EtR
R
t+2, EtR

S
t+2, Etpt+2, Etb5,t+2, Etb4,t+2, EtR

S
t+3, Etpt+3, Etb5,t+3, EtR

S
t+4, and Etpt+4.

Notice that expectations on bequests and pensions depend only on future assets, interest rates and
wage rates.

The assumption is that households have perfect foresight over the evolution of demographic
characteristics and therefore know future cohort survival probabilities and sj,t and cohort shares
shj,t for j = 1, . . . , 6 and t = 0, . . ., and form expectations regarding next period’s wages and
interest rates by regressing these on a subset of their information set at time t containing the history
of states It =

{
η0, . . . , ηt−1, a

R
0 , . . . , a

R
t−1, a

S
0 , . . . , a

S
t−1

}
. Since the economy’s states in period t are{

ηt−1, a
R
t−1, a

S
t−1

}
, the regressions are:

wt = βw0 + βwη ηt−1 + βwRa
R
t−1 + βwS a

S
t−1 + εwt ,

RRt = βR0 + βRη ηt−1 + βRRa
R
t−1 + βRS a

S
t−1 + εRt ,

RSt = βS0 + βSη ηt−1 + βSRa
R
t−1 + βSSa

S
t−1 + εSt .

This gives me estimated coefficients β̂w0 , β̂wη , β̂wR , β̂wS , for the wage rate and its counterparts for

the risky interest rate: β̂R0 , β̂Rη , β̂RR , β̂RS , and the safe interest rate β̂S0 , β̂Sη , β̂SR, β̂SS . I then use these
coefficients and the actual states to compute a one-period-ahead forecast, which I assume are the
households’ expectations: Etwt+1, EtR

R
t+1, and EtR

S
t+1:

Etwt+1 ≡ β̂w0 + [M(L|ηt−1)η(L) +M(H|ηt−1)η(H)] β̂wη + β̂wRa
R
t + β̂wS a

S
t ,

EtR
R
t+1 ≡ β̂R0 + [M(L|ηt−1)η(L) +M(H|ηt−1)η(H)] β̂Rη + β̂RRa

R
t + β̂RS a

S
t ,

EtR
S
t+1 ≡ β̂S0 + [M(L|ηt−1)η(L) +M(H|ηt−1)η(H)] β̂Sη + β̂SRa

R
t + β̂SSa

S
t .

To be able to compute their forecast, period t households need to estimate ηt, which they do by
using the Markov transition matrix M , and ηt−1. A further wrinkle to the problem has to do with
simultaneity. To compute households estimates I need aRt and aSt , but these depend on a2,t, a3,t,
a4,t, and a5,t, which are the variables I am trying to solve for, and for which I need the expectations
in the first place. To solve this problem I set up a system of 4 equations (C.6)-(C.9) on 4 unknowns:
a2,t, a3,t, a4,t, and a5,t. I can write the right-hand-side of these four equations as functions of past
variables, and expectations which I can in turn write as functions of the unknowns I am looking for.
For this last step, I need a Martingale assumption on aggregate asset types: Et+kaj,t+k = aj,t for
k = 1, 2, 3. Note that this still allows me to take into account the direct (if not the indirect) effect of
the demographic transition on future variables because when I aggregate cohort savings to obtain,
for example, Et+ka

R
t+k, I take into account the future evolution of cohort sizes, which households

are assumed to know. Therefore, Et+ka
R
t+k = sh2,t+ka2,t + sh3,t+ka3,t, for example. I also use this

to compute higher order expectations for wages and interest rates like, for example, Etwt+2.
In steady-state, the solution that results from this expectation formation mechanism, like the

rational expectations solution, has agents make zero average forecast mistakes. I illustrate this in
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Figure 12 for wage expectations (the results are similar for interest rates expectations). Panel A
shows the forecast errors for a particular simulation: in periods when the aggregate shock turns out
to be high, agents tend to underpredict next-period’s wages (dots above zero) and overpredict when
the shock is low (dots below zero). Statistically I cannot reject, at the 5% level, the null that the
mean forecast error is zero. Panel B shows wages and respective expectations averaged over multiple
simulations – the invariant distribution means. Again, one can see that in the initial steady-state,
expectations are very accurate, on average (basically the same point that panel A makes), but that
some of this accuracy is lost in the transition period and is gradually recovered as time in the new
steady-state increases. This is because agents take into account all the history they have available,
so when the transition starts, most of their regressions sample pertains to the previous steady-state.

Figure 12: Expectation formation performance

A: Wage forecasting errors (one simulation)
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B: Wages vs. expectations (means)

0 20 40

Periods

1.4

1.6

1.8

2

2.2

2.4

E Algorithm

The algorithm proceeds in two large blocks. In the first block I solve for the equilibrium wage rate,
wt, and interest rates for the two assets: RRt and RSt . I do this by solving the producers’ problem
each period given current states: the aggregate shock, ηt1 , risky funds supplied, aRt−1, and safe funds
supplied, aSt−1. Armed with prices, in a second block, I solve the households’ problem and find saving
decisions for next period a2,t, a3,t, a4,t, and a5,t, which allows me to redo the whole process for the
next period. In more detail, here are the steps:

(1) Supply initial asset holdings a2,−1, a3,−1, a4,−1, and a5,−1 (in practice this is an informed choice
close to steady-state).

(2) Start simulation with η0 = 1 and draw a sequence of shocks {ηt}S+T
t=1 using the Markov tran-

sition matrix M .
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(3) For every period t = 0, . . . , S + T , given states ηt−1, aRt−1, and aSt−1 solve for labor market and
asset markets clearing

(3.1) Interest rates loop: Guess interest rates RR0,t, R
S
0,t : If in first period provide informed

guess, otherwise start with interest rates from previous periods

(3.1.1) Wage rate loop: guess a wage rate, w0,t and solve producers’ problem to determine
demand for labor

(3.1.2) Iterate on wage rate until labor market clears: if labor demand larger than labor
supply (given by exogenous population evolution) adjust wage down; if larger adjust
wage up; otherwise done

(3.2) Iterate on interest rates until both asset markets clear. This is a two-dimensional problem
(unlike the labor market problem) that is more complicated and time consuming

(3.2.1) Given risky rate guess RR0,t find a safe rate target RST0,t(R
R
0,t) that clears safe securities

market

(3.2.2) Given safe rate guessRS0,t find a risky rate targetRRT0,t(R
S
0,t) that clears risky securities

market

(3.2.3) Check whether “guesses” and “targets” coincide. If so, done. If not, use an ad-
justment factor α ∈ (0, 1) and update guesses: RR1,t = αRR0,t + (1 − α)RRT0,t and

RS1,t = αRS0,t + (1− α)RST0,t until convergence

(4) Given states ηt−1, current savings a2,t−1, a3,t−1, a4,t−1, a5,t−1, and equilibrium prices wt, R
R
t ,

RSt , solve the households’ problem to find saving for next period a2,t, a3,t, a4,t, a5,t. See details
in sections C and D.

(5) Go back to (3) while t ≤ T + S

(6) Repeat steps (1) through (5) for N simulations, dropping the first S periods from each sim-
ulation. Take averages over the N simulations, resulting in an invariant distribution with T
periods.
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